EMERGENT DISEASES

- Caused by exotic pathogens introduced from a different region of the world. Either pathogen or pathogen+vectors may be introduced
- Caused by climatic or ecological changes increasing pathogenicity of native microbes
 - Global warming, strongest effects are at the margin of ranges
 - Anthropogenic alteration of the ecosystem
 - Exotic ecosystem and native pathogens: planting of exotics or planting off site

Emergent diseases

- They are normally infectious, not to be confused with syndromes caused by abiotic factors
- They are long lasting or permanent, as opposed to secondary diseases that emerge periodically, for instance during prolonged drought

Stunted growth

Trunk insects & associated fungi

Fungal twig dieback

Cryptocline

Fungal branch dieback Diplodia

Twig girdlers *Agrilicus* Foliar insects, oak pit scale

Canker rots, Hymenochaetal

Emergent Diseases: temporal patterns are generally different between

- EXOTIC AGENTS
 - Rapid outbreaks
 - May cycle down after outbreak

- NATIVE AGENTS
 - Progressive, gradual even if dramatic increase
 - Less likely to cycle down

Bases of Invasion Biology of Pathogens

- Source: it can be either a pathogen in its native area, possibly with a cryptic phase, or not (weak pathogen or endophyte). In general, the larger the populations of the pathogen, the easier they will become a source
- Transport, survival: related to resting structures, distance, season, substrate (wood, soil, live plants, animal vector)

Biogeographical patterns and determinants of invasion by forest pathogens in Europe 2013

A. Santini¹, L. Ghelardini¹, C.De Pace², M. L. Desprez-Loustau³, P. Capretti⁴, A. Chandelier⁵, T. Cech⁶, D. Chira⁷, S. Diamandis⁸, T. Gaitniekis⁹, J. Hantula¹⁰, O. Holdenrieder¹¹, L. Jankovsky¹², T. Jung¹³, D. Jurc¹⁴, T. Kirisits¹⁵, A. Kunca¹⁶, V. Lygis¹⁷, M. Malecka¹⁸, B. Marcais¹⁹, S. Schmitz⁵, J. Schumacher²⁰, H. Solheim²¹, A. Solla²², I. Szabò²³, P. Tsopelas²⁴, A. Vannini²⁵, A. M. Vettraino²⁵, J. Webber²⁶, S. Woodward²⁷ and J. Stenlid²⁸

What is being moved

Where from

SUBSTRATE/PATHWAY of introduction

Globalization

Figure 2: The global aviation network

Bases of Invasion Biology of Pathogens

- Establishment success is related to
 - presence of host (if host specific) or of similar host
 - survival as saprobe
 - similarity in climate between home and new region
 - lack of competitors/predators.
- If transmission > mortality then organism becomes invasive

Transmission

• If naïve hosts do not have any resistance then

Transmission=Reproductive potential

If exotic pathogen has a one or a few hosts, spread is usually faster. Gaps in host presence may be less important than dilution of inoculum (some hosts will not be infectious)

Bases of Invasion Biology of Pathogens

- Exotic organisms are all characterized by a strong genetic bottleneck, because only a few individuals make it!! How can a few individuals conquer a new continent
 - Drop traits they do not need
 - De novo mutation
 - Hybridization with native relative: btw most of the genes go from native to exotic species
 - Mate with other introduced individuals maybe originally from a different area

With a few exceptions

- Most successful exotic invasive species were introduced multiple times. That is why we need not to be complacent about re-introducing what apparently we think is the same pathogen, or even moving introduced pathogens from one site to another
- Eg. Only one sex of exotic forest pathogens is often introduced, that limits the ability of organism to adapt; need to avoid further introductions

Species has ancient lineages evolved in isolation (e.g. *P. ramorum*)

- Genetic divergence
- Phenotypic diversity:
 - Mating type
 - Growth rate
 - Pathogenicity
 - Host-specificity

Mating type

- Loci under selection may be linked to mating type
- Recombination will accelerate evolutionary rate
- Sexual structures may confer advantage

Sexual structures may confer advantage

• Sexually produced **oospores** allow for survival in harsher climatic conditions

- Homothallic species such as *P. nemorosa* and *P. pseudosyringae* are less virulent than *P. ramorum* but are also introduced in California (Linzer et al. 2008) and have a much broader distribution, why?
 - History (introduced earlier ?)
 - Because homothallic they produce oospores

Growth rate...

NA2 > NA1

Specific genotypes associated with specific phenotypes

- Some specific genotypes carry specific phenotypes
- Phytopthora cinnamomi: different genotypes associated with different commodities and transported around the world: are genotypes equivalent?

- **1-** Huge oak mortality in Colima, Mexico (Tainter *et al*. 2000)
- **2-** New problems in CA Christmas tree nurseries (2002).
- **3-** Quasi-extinction of rare manzanita in CA (Swiecki *et al*. 2004)
- All three recently reported (10 years)
- All three associated with *P. cinnamomi*
- All three associated with the same novel genotype of the pathogen

Widespread mortality of Ione manzanita caused by *P. cinnamomi*

Predicting impacts of invasions (I)

$\mathbf{I} = \mathbf{k} * \mathbf{i} * \mathbf{t}_{(hcpsv)}$

- \mathbf{k} = constant depending on the pathosystem
- -i = number and source of introduction events
- t = transmission rate

h = density of sporulating hosts

c = permeability of landscape

p = favorability of climatic conditions

 $\mathsf{s} = \mathsf{synchronicity}$ between host susceptibility and pathogen life cycle

 \boldsymbol{v} = variation in susceptiility of hosts and virulence pathogen

Garbelotto & Pautasso, 2012

<u>Transmission</u> is an overlooked aspect, which includes, but is much more, than just pathogenicity

