

SUBSTRATE/PATHWAY of introduction

Figure 2: The global aviation network

Oomycota

- Belong to a kingdom that includes kelp and diatomes
- Kingdom used to be called Chromista (brown algae), it is now the Straminopila
- It includes many important plant pathogens:
 - Peronospora: mostly aerial
 - *Pythium*: mostly soilborne organisms
 - Phytophthora: mixed biology

The Irish Potato Famine

- From 1845 to 1850
- Phytophthora infestans arrived in Ireland causing Late Blight of potato
- Resulted in the death of 750,000
- Emigration of over 2 million, mainly to the United States.

Sudden Oak Death (Phytophthora ramorum) in California

Janice Alexander— Forest Health Prg. Coord.

Why do we care about Sudden Oak Death?

- Over <u>3 million trees already lost</u>
- <u>Ecological effects</u>: --forests look different --wildlife impacts
- <u>Social effects</u>: --hazard trees --fire risk --economic costs --emotional impacts
- <u>Ongoing threat</u>: --25% of susceptible forest affected so far

Ecological Impacts

- There are about 110 species of birds which breed in California's oak woodlands. Another 60 or so species use oak woodlands outside the breeding season.
- 105 mammal species.
- 58 amphibians and reptiles.
- An estimated 5,000 species of insects.
- An unknown number of microbes.
- Wide variety of other trees, shrubs and flowering plants which co-exist with oak woodlands.

Redwood mortality is size-dependent, with unexpected increases due to SOD

DBH (cm)

Synergistic effects of both disturbances on redwood were unexpected, and were not observed in other SOD-resistant species, like bay laurel.

<u>Outline</u>

- Biology
 Pathogen
 Hosts
 Spread
 Management (SLO Co.)
 - Diagnosis
 - Treatment options

--Water mold, algae, fungus--Sporangia, Zoospores,-Chlamydospores

Sporangia ~

TO REAL PROPERTY AND INCOME.

Chlamydospores

Sporangia

Lentice

Zoospores

--Has host spp --Confirmed in 15 in CA --(rt. map) + & - Samples

Sode States Sode States

Symptoms Quercus species

Canker Host:

- Black
- Coast live
- Shreve
- Canyon live
- (Collateral Damage)

Not Occur On:

- Leaves of Oaks
- White Oaks

Aerial stem cankers on oak spp. and tanoaks: deadly but not infectious, e.g. stem lesions do ot produce significant number of spores

Girdling aerial 'cankers' removed from roots

Symptoms on Foliar Hosts

• Infections limited to leaves and twigs; not fatal

Rhododendron

P. ramorum Look-Alikes

Other Phytophthoras

P. nemorosa P. psuedosyringae

Other diseases & injuries

Bacterial infections Armillaria & bark beetles Insect borers Canker fungi Root diseases

Abiotic problems

Tanoak (Notholithocarpus densiflorus)

- Most important host
- Small branches, twigs, & leaves
- Leads to more infection

#10 Distance Spread from Foliar Hosts

Ideal conditions:

- •61-72° F
- Wet for 12+ hours

Outbreaks

 Ideal conditions occur for 2+ consecutive years

Distance (200 yds)

Warmer, wetter winters combined with El Niño springs

aig Streen 2

Spread through Rainfall events

Lenticel

Oak infection: 1- High rainfall in short period, 2- Six weeks incubation, 3- One-two weeks of warmer weather, 4- Proximity to bay laurels (closer than 60 feet)

Bay/Oak association

Yearly

Coast Live Oak (no sporulation)

Canker margin in phloem

Soil

Bleeding canker

Sporangia

- Spread by hikers
- Spores live 2 days
- Can control

Spread through <u>Recreation ? Maybe but</u> hard evidence lacking

Phytophthora ramorum

- 4 different subspecies (lineages)
- Origin likely to be SouthEast Asia
- Ornamental trade, worldwide
- Hundreds of host species
- Different diseases: from mild to lethal depending on host

Actual distribution of P. ramorum

P. ramorum introduced at least 12 times in CA (Croucher et al. 2013). Multiple introductions and not ability to move far explain distribution of disease

Because pathogen is exotic, native flora has limited resistance to its attack and regular tree health maintenance simply will not suffice

Cluster 1 of strains is the original introduced, but others are more widespread

Distribution of SOD in California wildlands

- Distribution is result of discrete introductions followed by natural spread but only in favorable habitats (redwood-tanoak and mixed evergreen)
- As a result, distribution is extremely patchy in 14 contiguous coastal counties from Northern Humboldt to Southern Monterey
- Presence is extremely marginal in San Francisco, Solano, and Lake counties

Leaf Sampling: easy to do foliar infection always predates stem infection

For each foliar host

- Collect 5-10 symptomatic leaves for each tree
- Place in ziplock bag W / ID
- Submit promptly to Ag Comm.
- For bark samples
 - Contact trained sampler
 -Difficult to collect

"SOD Blitz" (citizen science)

UC Berkeley & CA NPS host informational meetings.

Do the SOD Blitz survey to track SOD in your community!

sodblitz.org

Download SODmap Mobile app

(iPhone and Android)

Statewide Status

SODmap Mobile:

SODMAP Mobile

U.C. Berkeley Forest Pathology and Mycology Laboratory

Enlarge screen view using your Index and thumb fingers

Red pins = SOD positive, tap to find out date and number

Risk where you are physically standing

When assessing risk at a second location, remember to tap SODMAP button and then Risk button, in order to reset, otherwise you may get same warning as in the previous location

A two-digit number in this line gives you more confidence

Number > 4 in this line gives you more confidence

Precise location and coordinates of user: You can record if needed

Stay alert but no need to do anything

May want to do something

High Risk Level

1 Positive trees within 200m

2 Positive trees within 1km, 168 trees sampled post 2009

Current Location:

37.872738° x -122.262817°

Urgent to do something if you have Oaks and bays growing together

P. Ramorum Regulations

Disposal

- Leave dead trees standing if no hazard
- Best left on site
 - Wrap cut wood in clear plastic if infested with insects
- Commercial landfills & composting yards
- Don't move material out of county

<u>Treatment</u> options: (Disproven or Unproven)

- Insecticides: don't address underlying
 P. ramorum infections.
- "Alternative" treatments: soil amendments, fertilization, compost teas, etc. are not effective.
- Excisions: no effect

Cleaning Tools

Infected Tool Surface

Transmission of SOD Through Pruning Tools

Treatment

Green waste more infectious than wood and soil

Drying infected material is best strategy to sanitize: small chips best, thin layers best, exposure to sunlight best, dry on site before removing if possible

For sanitation of equipment, tools, and vehicles: if it looks clean it is not infectious

<u>Chemical</u> treatment

Phosphonate

- Injection
- Surface application

Application

- Specimen trees
- Every year in the fall (2x the first year)
- Prophylactic, no cure!

Injection Treatment

Efficacy of phosphonic acid, metalaxyl-M and copper hydroxide against *Phytophthora ramorum in vitro* and

in planta

M. Garbelotto⁺, T.Y. Department of Environmental St Arboriculture & Urban Forestry 33(5): September 2007

Arboriculture & Urban Forestry 2007. 33(5):309-317.

Phosphite Injections and Bark Application of Phosphite + Pentrabark[™] Control Sudden Oak Death in Coast Live Oak

M. Garbelotto, D.J. Schmidt, and T.Y. Harnik

Preventive treatment that strengthens response of oaks: we developed an alternative to injection

120 100 80 60 40 20 0 Untreated MetalaxyI-M Phosphonic acid

Figure 2 Lesion length (with bars showing standard deviation) caused by three *Phytophthora ramorum* isolates inoculated underbark in the phicem of potted coast live oak saplings, either untreated, treated with metalaxyI-M drench, or by phosphonic acid injection. Each treatment was performed on 15 saplings one week before inoculation; the experiment was terminated 6 weeks after inoculation.

PENTRA-BARK

BARK PENETRATING SURFACTANT

INTRA-BA	
TACK PERSONNELLATING SURFACT	Les .

<text>

Fopical Treatment

Phosphonate (aka Phosphite) Chemical Treatments

Water soluble. Systemically absorbed and translocated by the xylem and phloem

Inhibits fungal growth and activates the plant's own defensive response

Preventative treatments are more effective than curative

Effect of Tree Size on Treatment Efficacy

2009

Gypsum amendments (Anhydrous Calcium Sulfate)

 Appears to >efficacy of <u>phosphonate</u>, so done every <u>2 years</u> rather than yearly.

 3 to 5 lbs. per tree, mixed with top layer, within radius of 3 ft. of trunk.

 Apply 1-2 weeks before phosphonate treatment.

About 3 ft. around trunk

<u>Cultural</u> treatments (i.e., <u>Foliar Host</u> removal & pruning)

Not for use in a pure tanoak stand
Caution: may result in no mature trees

Prescriptions:

- Cut 2.5 to 5 yd. of clearance
- Focus on lower branches
- Monitor for sprouts & remove sprouts

Probablity of Oak infection is greatest for large oak nearest infected bays

NEW!!!

Choose line depending on size of your oak. Risk should be no more than 0.2. Draw horizontal line from 0.2 until it intersects the line you picked based on size of oak. Draw vertical line at intersection point. On x axis is the minimum buffer zone where you should remove bay laurels

Bay removal around oaks: we tested the efficacy of removal 10 and 20 m (30-60 ft) around oaks in a 7 year-long study

Fig. 2. Assessment of the efficacy of the bay removal treatment. Comparison of the reds frequency (%) between control (C-magenta line) and treated (T-green line) plots for each sampling year. Circled values indicate significance at 0.05 level according to the results of the Fisher's exact test. The dotted line represents the treatment time. Error bars refer to 95% exact CI.

Stand level bay removal will reduce intensity of outbreak

Probability of bay infection with varying bay density

Effect of tanoak density

Disease in stands with bay laurel and tanoak results in severe loss of tanoak

In tanoak only stands the disease removes large trees but increases small tanoak stems that develop on dead trees

However, tanoak can persist at low densities (< 44 trees ha ⁻¹) when no bay laurel is present

Oregon: Large-area 100% Removal— Moderately Effective

Humboldt County, CA

2016

Jay Smith Road

- Cutting, no fire
- Bay can sprout!

The search for the Holy Grail of resistance:

There are significant differences in susceptibility among individuals within all species tested

Constitutive chemistry and/or phenology invoked to explain differences that are both inheritable (i.e. genetic) and determined by the environment

Resistance proper not found yet, but decreased susceptibility and/or tolerance may be extremely useful and more durable The search for the Holy Grail of resistance:

Ongoing screening for resistance in tanoak includes common garden tests both in lab and nature. With phenotypic traits studied by family (half sibs) including lesion size, survival in absence and presence of SOD and morphology

Common garden seedling tip assays of families indicates role of genetic variation within host species

Survival highest in families picked as more resistant based on lab assays

Family choice criterion

Prevention is key!

Early Detection

Water Monitoring

Dog training

USDA Animal & Plant Health Inspection Service (APHIS) P. ramorum P. cinnamomi P. nemorosa P. cactorum

water, soil, infected plants

www.suddenoakdeath.org

www.matteolab.org