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Abstract
This review deals with major diseases caused by fungi and oomycetes in the citrus supply chain, including post-harvest 
fruit diseases, and summarizes the strategies and techniques that may be adopted to prevent the damages and losses they 
cause. Its scope is to highlight the contribute that smart technologies provide towards new solutions for sustainable and safe 
management strategies of these diseases. Particular attention is given to the application of biopesticides, natural substances, 
resistance inducers and biostimulants to prevent fruit rots. The review focuses also on mycotoxins and mycotoxigenic fungi 
that contaminate fresh fruit and food products derived from citrus fruit, an aspect that has been little investigated and regu-
lated so far. An additional relevant aspect addressed by the review is the early detection and routine diagnosis of fungal and 
oomycete pathogens that threat the international trade and long-distance shipment of citrus fruit, with a particular emphasis 
on quarantine pathogens. In this respect, the opportunities offered by new practical, rapid, sensitive and robust molecular 
diagnostic methods are briefly discussed.

Keywords Biopesticides · Biological control agents · Molecular diagnostics · Forecasting models · RPA · Mycotoxins · 
Quarantine pathogens · Alternaria · Colletotrichum · Phyllosticta citricarpa · Phytophthora · Penicillium · Plenodomus 
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Introduction

Citrus, the most important cash fruit crop worldwide 
(Ismail and Zhang 2004), includes plant species belonging 
to the genera Citrus, Eremocitrus, Fortunella, Microcitrus 
and Poncirus, native to South, East and Southeast Asia, 

Melanesia and Australia, (Khanchouch et al. 2017; Wu et al. 
2018).

At a global scale, citrus are cultivated in more than 140 
countries (FAO 2020). Citrus fruits are mostly intended for 
human consumption, as fresh fruit and/or derived beverages 
(Talibi et al. 2014). The international production of citrus 
fruits encompasses mainly sweet oranges (65%), mandarins 
(19%), lemons and limes (11%), and grapefruits (5%) (FAO 
2020). In this respect, countries from the Mediterranean area 
are the main fresh fruit producers for the international mar-
ket worldwide (Khanchouch et al. 2017).

A major constraint to the successful trade of citrus, both 
domestically and internationally, is the occurrence of severe 
diseases affecting plants and/or fruits throughout the entire 
supply chain (Agosteo et al. 2013; Liu et al. 2013; Naqvi 
2006; Talibi et al. 2014). In this respect, citrus are susceptible 
to infection by numerous fungal and oomycete pathogens, 
from the nursery to the fruit bearing stages, resulting in yield 
losses ranging on average between 30 and 50% (Chalupowicz 
et al. 2020; Strano et al. 2022). Diseases of plants such 
as the Mal Secco caused by Plenodomus tracheiphilus 
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and the Foot and Crown Rot, Root rot and Brown Rot of 
fruit disease complex caused by Phytophthora species are 
among the major limiting factors to citrus cultivation in the 
Mediterranean basin area (Cacciola and Magnano di San 
Lio 2008; Migheli et al. 2009). Additionally, due to their 
high-water content, nutrient composition and acid pH, citrus 
fruits are highly susceptible to infection by various fungi and 
oomycetes (Tripathi and Dubey 2004). Fruit infection occurs 
in both the pre-harvest (from bloom to harvesting stage) and 
postharvest (picking, packaging, storage, transportation and 
shelf life) stages (Naqvi 2006). The most common pre-harvest 
pathogens cause significant reductions in both fruit yield and 
quality and comprise species in the following list. At least, 
24 Colletotrichum species, including the prevalent species 
C. gloeosporioides and C. karsti; the tangerine pathotype of 
Alternaria alternata; Phyllosticta citricarpa, a major citrus 
quarantine pathogen for the Mediterranean and European 
region; the frequently isolated Phytophthora species, such 
as P. nicotianae, P. citrophthora and P. palmivora; the less 
frequent P. hibernalis, P. syringae and P. mekongensis 
(Cacciola and Magnano di San Lio 2008; Crous et al. 2017; 
Gai et al. 2021; Guarnaccia et al. 2017; Khanchouch et al. 
2017; Naqvi 2006; Puglisi et al. 2017; Wang et al. 2021). 
Pre-harvest infections can also manifest themselves during 
the postharvest stages, in addition and notwithstanding 
the concomitant attacks of typical postharvest wound-
dependent fungi, like Penicillium digitatum, P. italicum and 
Geotricum candidum var. citri-aurantii, which, together, are 
the causative agents of the most destructive postharvest rots 
affecting citrus fruits worldwide (Bhatta 2022; Ferraz et al. 
2016; Kanashiro et al. 2020; Palmieri et al. 2022; Palou 2014; 
Talibi et al. 2014).

Nowadays, the management of plant diseases dictates the adop-
tion of smart strategies in line with the needs and the demands of 
society, regarding the availability of products of good quality and, 
at the same time, toxicologically and environmentally safe.

The purpose of this review is to provide a current picture 
of the implications of outbreaks of plant diseases caused by 
fungi and oomycetes in the citrus supply chain, highlighting 
the state of art and new promising improvements available 
thanks to the development of smart management strategies. 
The review will first introduce the main fungal and oomy-
cete plant pathogens and the disease they cause and then it 
will summarize the knowledge about specific management 
options, with particular emphasis on novel ecofriendly tools 
and sustainable disease management strategies, including 
the management of contamination of food products by myco-
toxins. New, rapid, accurate and cost-effective molecular 
techniques for the early detection of fungal and oomycete 
citrus pathogens will be also discussed, because we believe 
they are a necessary component of any sustainable and inte-
grated citrus disease management strategy.

Fungal and oomycete diseases affecting 
citrus plants

Mal Secco caused by Plenodomus tracheiphilus

The mitosporic fungus Plenodomus tracheiphilus (for-
merly, Phoma tracheiphila) is a quarantine plant patho-
gen causing the disease known as Mal Secco (De Gruyter 
et al. 2013; EPPO 2015). The disease was named after 
the Italian words male (disease) and secco (dry) (Migheli 
et al. 2009; Nigro et al. 2011). The term Mal Secco refers 
to nonspecific symptoms and was initially used in a 
broad sense to indicate citrus diseases of various origins 
(Migheli et al. 2009). Later, Petri used the term Mal Secco 
of citrus in a stricter sense to indicate a tracheomycosis 
widespread in lemon orchards in Sicily (Migheli et al. 
2009).

The principal host of P. tracheiphilus is lemon (Citrus 
limon), although the disease can be found on other citrus, 
including citron (C. medica), bergamot (C. bergamia), lime 
(C. aurantifolia), sour orange (C. aurantium), and rough 
lemon (C. jambhiri) (Nigro et al. 2015). The European 
and Mediterranean Plant Protection Organization (EPPO) 
included this pathogen in the A2 list recommended for regu-
lation as quarantine pests. Moreover, Plenodomus tracheiph-
ilus is also in a list of pests recommended as non-regulated 
non-quarantine pests (RNQPs) in the EPPO region (Picard 
et al. 2018) and is considered of quarantine concern by sev-
eral regional plant protection services worldwide (Asia and 
Pacific Plant Protection Commission—APPPC, Caribbean 
Plant Protection Commission—CPPC, Comité Regional de 
Sanidad Vegetal para el Cono Sur—COSAVE, European and 
Mediterranean Plant Protection Organization—EPPO and 
North American Plant Protection Organization—NAPPO) 
(EPPO 2015; Migheli et al. 2009; Nigro et al. 2011; Zhao 
et al. 2021).

The typical lemon rootstocks that stand out for their 
high susceptibility are: (i) sour orange (C. × aurantium), 
the most widespread lemon rootstock in Italy, Greece, and 
Turkey; rough lemon (C. jambiri); the (ii) volkamer lemon 
(C. volkameriana) and the (iii) alemow (C. macrophilla) 
(Migheli et al. 2009). Conversely, other rootstocks, such 
as Cleopatra mandarin (C. reshni), trifoliate orange (Pon-
cirus trifoliata), and citranges (C. × sinensis × P. trifoliata) 
have been reported as being less susceptible (Migheli et al. 
2009). There is evidence that the rootstock influences the 
susceptibility to Mal Secco of the scion (Migheli et al. 
2009; Solel and Spiegel-Roy 1978).

The Mal Secco disease induces a broad array of specific 
and non-specific symptoms that can occur independently 
or jointly in the manifestation of the disease (Migheli et al. 
2009) (Fig. 1).
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Early symptoms usually appear on the leaves of the 
uppermost shoots, which display a slight discoloration of 
the primary and the secondary veins (Fig. 1i). As the disease 
progresses, the leaves lose their shine, turn yellow, wither 
and fall down, mostly without the petioles, which persist on 
the shoots. The shoots often appear chlorotic on the apical 
part while maintaining a normal green color in the basal 
part (Fig. 1d, e), although sometimes they may turn brown. 
Newly infected shoots are characterized by a yellow or pink-
salmon to reddish discoloration of the wood, which occurs 
also in the wood of the main and secondary branches as well 
as in the trunk, where the pathogen growth is progressing 
(Fig. 1g, h). With time, the plant undergoes a progressive 

basipetal desiccation of shoots, branches, and trunk, which 
leads to death of the whole plant (Fig. 1a–c) (Abbate et al. 
2019; Migheli et al. 2009; Nigro et al. 2011; Russo et al. 
2020).

When the pathogen infects the outermost woody rings 
of large branches, symptoms may only affect a portion of 
the host and less frequently the entire plant. Conversely, 
when infection starts in the main roots, symptoms can pro-
gress rapidly and plant death ensues in a short time: this is 
a variant of the disease known as Mal Fulminante (sudden 
death) (Migheli et al. 2009; Nigro et al. 2011). However, 
when infection starts from rootlets, as it frequently happens 
in young nursery plants and in bearing trees in groves, P. 

Fig. 1  a, b and c, progression 
(from left to right) of the sever-
ity of wilting and defoliations 
of twigs in a young lemon tree 
affected by Mal Secco in a com-
mercial orchard in Sicily (Italy); 
d and e, shedding of leaves and 
defoliation of apical twigs; f 
withered twig of lemon with 
scattered pycnidia of Plenodo-
mus tracheiphilus; longitudinal 
(g) and transverse (h) sections 
on a lemon twig with the typical 
orange-reddish discoloration of 
the wood; i, clearing and chlo-
rosis of leaf veins in a lemon 
tree affected by Mal Secco
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tracheiphilus can remain segregated in the inner wood layers 
for several years. When the disease is compartmentalized 
in the inner wood layers, symptoms progress very slowly 
(Nigro et al. 2011). Nonetheless, once the pathogen reaches 
the external woody rings, the disease progresses rapidly, and 
the plant shows symptoms similar to those produced by Mal 
Fulminante (Nigro et al. 2011). The withering young shoots 
and main branches show a browning of the innermost woody 
cylinder and the discoloration of the wood progressively 
darkens until it acquires a blackish hue carrying a smell of 
overripe melon. This variant of the disease is named Mal 
Nero (black disease) (Nigro et al. 2011).

The two syndromes, namely Mal Fulminante and Mal 
Nero, do not affect only susceptible hosts, but can also occur 
in Citrus species known as tolerant, especially if they are 
grafted onto susceptible rootstocks (Nigro et al. 2011).

An additional specific trait of the Mal Secco disease is 
the presence of signs of the pathogen (Gentile et al. 2000; 
Migheli et al. 2009) such as small, black and globose pyc-
nidia, produced starting at the end of the autumn, normally 
in 1- to 2- year-old slowly desiccating shoots or suckers. 
Their presence elicits the detachment of the epidermis from 
the underneath tissues, which is followed by penetration of 
air, resulting in the appearance of long silver-gray stripes on 
the affected plant parts (Nigro et al. 2011). The cracking of 
the epidermis makes it possible to observe pycnidia as black 
spots directly by the naked eye or with a low magnification 
lens (Nigro et al. 2011).

Overall, the evolution of the disease is strictly dependent 
on climatic conditions and host susceptibility. It is known 
that warm moist conditions lead to infection and disease 
development. It has been observed that the optimum tem-
perature for the development of the disease ranges from 20 
to 25 °C; therefore, the disease progression is more rapid 
in spring and autumn (Migheli et al. 2009). Temperatures 
above 30 °C inhibit mycelial growth and disease progres-
sion, but do not kill the pathogen within the infected tissues 
(EFSA 2014a; Perrotta and Graniti 1988). In addition to a 
suitable temperature, wind, hail and heavy rains contribute 
to P. tracheiphilus infections by causing wounds through 
which the pathogen can enter the host plant. Moreover, rain 
and wind are the main natural dispersal agents of the Mal 
Secco fungus (Krasnov et al. 2022; Migheli et al. 2009). In 
the lemon producing Mediterranean areas, the infection 
period depends on local climatic and seasonal conditions. 
In Sicily, Italy, infections usually occur from September 
to April (EFSA 2014a; Somma and Scarito 1986). Mid-
November to mid-April was indicated as the most conducive 
period for Mal Secco infection in Israel, coinciding with the 
rainy season (Krasnov et al. 2022).

Statistical models based on climatic variables are increas-
ingly being used as technical support for the development of 
sustainable control of plant pathogens in modern agriculture 

(Hasanaliyeva et al. 2022; Scortichini 2022). They may be 
useful as forecasting and decision-making tools (González-
Dominguez et al. 2023; Rossi et al. 2012). A recent model 
using Maximum Entropy (MaxEnt) was recently applied to 
predict the geographic distribution of Mal Secco disease 
under current and future climatic scenarios (Krasnov et al. 
2022). The two climatic variables that mostly contributed to 
forecast the distribution of this citrus disease were precipi-
tation during the wettest month and minimum temperature 
during the coldest month. According to the MaxEnt model, 
although climate change is likely to reduce the overall extent 
of suitable areas for Mal Secco up to 23% by the year 2070, 
no shift of disease range is expected to occur in the Mediter-
ranean basin. Mathematical models were also used to assess 
the spatial distribution pattern and dynamics of Mal Secco 
in lemon orchards in Israel (Ben-Hamo et al. 2020; Krasnov 
et al. 2022). Results of these studies indicated the rate of 
disease spread depends primarily on orchard management 
practices, such as the planting and irrigation systems, and 
cultivar susceptibility. In our experience, the phytosanitary 
status of both propagation material and nursery plants is a 
crucial aspect determining the incidence and severity of the 
disease in new lemon plantings.

To date, no single method is effective in controlling 
the Mal Secco of citrus. Common strategies of control are 
based on the application of improved agronomical prac-
tices including the reduction of fungal inoculum by prun-
ing symptomatic twigs and branches, particularly withered 
shoots bearing pycnidia, and the timely removal of rootstock 
suckers. Spraying with authorized copper-based fungicides 
are also carried out, especially on young plants from nurs-
eries (Abbate et al. 2019). However, these treatments are 
causing concerns related to the long-lasting persistence of 
copper in the environment with the consequent toxic effects 
toward plants, animals and soil microbiota, and related to 
the contamination of food (Abbate et al. 2019; El Boumlasy 
et al. 2022). In this respect, a new promising super absorbent 
polymer (SAP) has been shown to act as an efficient reser-
voir for the controlled release of copper, specifically in the 
treatment of pruning cuts of lemon twigs affected by the Mal 
Secco. The use of this SAP has resulted in longer windows 
of treatment and in a reduction of heavy metals dispersion 
in the environment (El Boumlasy et al. 2022).

Promising and environmentally safe strategies for the 
management of Mal Secco have been pursued through lemon 
breeding (Migheli et al. 2009) based on the selection of 
spontaneous lemon genotypes tolerant to infection. Accord-
ingly, in the Ionian coast of Sicily (Italy), the traditional 
variety ‘Femminello’ has been in the past replaced with the 
cultivars ‘Monachello’ and ‘Interdonato’, two spontaneous 
hybrids between lemon and citron. The former cultivar is 
resistant but produces qualitatively lower and reduced fruit 
yield (Catalano et al. 2021; Migheli et al. 2009), while the 
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latter produces high quality fruit but, differently from other 
more productive lemon cultivars, does not bloom several 
times during the year. ‘Continella M84’ and ‘Femminello 
Zagara Bianca M79’ are noteworthy Mal Secco-tolerant 
lemon selections. These two cultivars produce high-quality 
fruits but are less tolerant than ‘Monachello’ to P. tracheiph-
ilus infections. ‘Femminello Zagara Bianca M79’ is hav-
ing a certain diffusion in new commercial plantings due to 
the recrudescence of the disease in typical lemon-growing 
areas of Sicily (Cacciola and Gullino 2019). Among foreign 
lemon cultivars, only ‘Meyer lemon’ shows levels of resist-
ance comparable to those of ‘Monachello’ and ‘Interdonato’, 
but its yield is unsatisfactory in terms of fruit commercial 
value (Migheli et al. 2009). Conversely, the early ripening 
and seedless triploid lemon-like hybrid, ‘Lemox’®, initially 
patented as a Mal Secco-tolerant cultivar, proved to be as 
susceptible as ‘Femminello Siracusano 2Kr’, a mutant clone 
obtained by cobalt γ-radiation, known for its high yield 
potential, but very susceptible to the disease (Cacciola et al. 
2010; Migheli et al. 2009; Russo et al. 2020).

Other interesting strategies for the selection of Mal Secco 
resistant/tolerant genotypes have been provided by the appli-
cation of biotechnologies such as in vitro selection, somatic 
hybridization, and genetic transformation. In vitro selection 
involves culturing protoplasts and embryogenic calli in the 
presence of phytotoxic metabolites produced by the patho-
gen to identify toxin-tolerant lines. Somatic hybridization 
involves fusing protoplasts from different citrus plants to 
obtain interspecific, Mal Secco tolerant-genotypes. Genetic 
transformation mediated by Agrobacterium tumefaciens 
has led to the creation of transgenic clones of lemon with 
enhanced tolerance to Mal Secco. The studies related to 
these strategies, as well as the Mal Secco tolerant/resistant 
genotypes identified, are summarized in Table 1.

Currently, a new approach is being pursued in an ongo-
ing breeding program of lemon for Mal Secco-resistance. 
The availability of a reference genome sequence of lemon 
‘Femminello Siracusano’ (Di Guardo et al. 2021) and of seg-
regating progenies obtained from crosses between resistant 
and susceptible lemon cultivars, facilitates the identification 
and mapping of Quantitative Trait Loci (QTLs), a prereq-
uisite for marker-assisted selection (Catalano et al. 2021; 

Iwata et al. 2016). This strategy has been widely applied in 
breeding programs for resistance to other devastating dis-
eases of herbaceous and tree crops, including citrus, such as 
Fusarium Head Blight and Stem Rust of wheat, Apple Scab 
and Citrus Huanglongbing, just to cite a few (Haile et al. 
2019; Huang et al. 2018; Karelov et al. 2022; Liebhard et al. 
2003; Marone et al. 2022; Patocchi et al. 2009; Soriano et al. 
2009; Zhao et al. 2018).

Foot and Crown Rot and Fibrous Root Rot caused 
by Phytophthora species

Phytophthora is a cosmopolitan oomycete genus (Robin and 
Guest 1994; Savita and Nagpal 2012) comprising species 
with either a narrow or a wide range of host plants, and 
occurring in both agricultural and forest ecosystems (Erwin 
and Ribeiro 1996; Sims and Garbelotto 2021).

Phytophthora species cause two of the most serious and 
economically important soilborne diseases in citrus crops 
worldwide, known as Foot and Crown Rot and Fibrous Root 
Rot, affecting trunk and root, respectively (Fig. 2) (Cacciola 
and Magnano di San Lio 2008).

The specific symptoms of the Foot and Crown Rot are 
cankers and gummosis at the base of the trunk, including 
the collar (crown) (Cacciola and Magnano di San Lio 2008). 
In detail, gum exudations appear from longitudinal cracks 
of the bark around necrotic areas (Fig. 2a–e), which show a 
distinct water-soaked discoloration. Additionally, the dead 
bark turns soft and sloughs off the central cylinder below and 
a callous is formed around the edges of the lesion (Cacciola 
and Magnano di San Lio 2008). When the above-described 
canker affects more than 50% of the circumference of the 
trunk, the plant shows symptoms of decay to the canopy, 
which include leaf chlorosis, little leaves, phylloptosis, 
dieback of twigs, small and poor colored fruit, offspring 
fruit production, twig dieback and withering of leaves dur-
ing periods of drought (Cacciola and Magnano di San Lio 
2008). Less frequently, gummosis can be observed on stem 
and branches of the scion (Fig. 2a). This aerial infection is 
caused by rain splashing and occurs mostly when grafting 
is close to the soil.

Table 1  Studies related to biotechnological approaches for the selection of Mal Secco resistant/tolerant genotypes

Biotechnological approach Mal Secco tolerant/resistant genotypes Study

In vitro selection ‘Variant 1.117’ from the ‘Villafranca’ lemon Nadel and Spiegel-Roy (1987)
‘Femminello-S’ Gentile et al. (1992)
‘Kütdiken’ Baș and Koç (2006)

Somatic hybridization ‘Valencia’ (sweet orange + ‘Femminello’ lemon) Tusa et al. (1990)
‘Hamlin’ (sweet orange/ ‘Milam’ lemon + ‘Femminello’ lemon) Tusa et al. (1992), Tusa (1996)

Genetic transformation two transgenic lemon clones of ‘Femminello Siracusano’ La Malfa et al. (2007)
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In the Fibrous Root Rot the thin roots slough their cor-
tex leaving only the white thread-like stele, which gives 
the root system a stringy appearance (Fig. 2f) (Cacciola 
and Magnano di San Lio 2008). The plant, then, reacts 
to the infection by forming new rootlets. However, in 
advanced stages of the disease, the production of new roots 
cannot keep up with the rate of death of fibrous roots. In 
this disease stage, the tree is unable to maintain an ade-
quate uptake rate of water and minerals and, at the same 
time, it lacks healthy tissue for storing nutrient reserves 
(Cacciola and Magnano di San Lio 2008). Consequently, 
symptoms of canopy decay, reduction of fruit size, loss of 

leaves and twig dieback, start to affect the plant (Dwiastuti 
2020; Graham and Timmer 1992).

The main kind of propagules responsible for Phytoph-
thora infections are zoospores, water-motile and biflagellate 
agamic spores released by specialized structures known as 
sporangia. Production of sporangia is mediated by the pres-
ence of water (Fig. 2h, j) (Bassani et al. 2020; Cacciola and 
Magnano di San Lio 2008). Sporangia are the structures 
responsible for disease transmission to other plants (allo-
infection) and for spread to different portions of infected 
trees (autoinfection). Typically, once zoospores are produced 
and released by sporangia, they swim toward the susceptible 

Fig. 2  a, b and c, Symptoms 
of Foot Rot and gummosis 
of the trunk on citrus trees in 
commercial orchards (Sicily, 
Italy); d and e, Gummosis of 
stem and Crown Rot on citrus 
saplings from a traditional 
local nursery (Sicily, Italy), the 
widespread use of containers for 
producing citrus saplings has 
greatly reduced the incidence 
of these diseases in commercial 
nurseries; f, Fibrous Root Rot; 
g, seven-day-old cultures of 
Phytophthora nicotianae isolate 
T3-B-K1A grown on V8A 
(left) and PDA (right) at 25 °C, 
with the typical stolonyferous 
colony morphology; h, papil-
late globose sporangia of P. 
nicotianae (scale bar: 25 μm); i, 
seven-day-old cultures of Phy-
tophthora citrophthora isolate 
Ax1Ar grown on V8A (left) 
and of PDA (right) at 25 °C, 
with stellate to petaloid colony 
morphology; j, papillate (right) 
and bi-papillate sporangia of P. 
citrophthora (scale bar: 25 μm)
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tissue of the host, lose their flagellum, encyst and germinate, 
starting the infective process (Judelson and Blanco 2005). 
Zoospores can infect any part of the plant. However, wounds 
may be necessary for infection of the trunk, branches and 
roots, while zoospores germ tube can penetrate fruits, leaves, 
shoots and green twigs directly even in absence of wounds 
(Cacciola and Magnano di San Lio 2008). Sporangia can 
also germinate directly forming germ tubes that penetrate 
the host plant tissues.

Other kinds of propagules that can cause infection are 
long-lasting resistant structures, such as chlamydospores 
(thick-walled large resting spores) and oospores (sexual 
spores) (Judelson and Blanco 2005; Jung et al. 2018). Natu-
ral infections are mostly caused by zoospores and rarely by 
other kinds of propagules (Cacciola and Magnano di San 
Lio 2008; Klotz and De Wolfe 1960). The primary source 
of inoculum is the rhizosphere, where the pathogen survives 
in the form of chlamydospores and oospores; the greater 
amount of inoculum is in the uppermost layer of the soil. 
Additionally, the infected rootlets and fruits are sources of 
secondary inoculum, which is represented by sporangia 
(Cacciola and Magnano di San Lio 2008).

The most common Phytophthora species causing these 
diseases in Mediterranean basin are P. nicotianae (Fig. 2g, 
h) and P. citrophthora (Fig. 2i and j). P. nicotianae is more 
active in warm conditions and attacks mainly the rootlets, 
while P. citrophthora is mainly associated to trunk rot (Alva-
rez et al. 2009; Dirac et al. 2003; Ippolito et al. 2002; La 
Spada et al. 2022).

In addition to the use of chemicals, which is the most 
effective strategy to control diseases caused by Phytophthora 
(Foot and Crown Rot and Fibrous Root Rot), management is 
commonly integrated by specific agronomic practices, such 
as grafting plants into Phytophthora-tolerant rootstocks and 
appropriate water and soil management. (Cacciola and Mag-
nano di San Lio 2008).

Although high virulent Phytophthora species, such as 
P. nicotianae, are markedly able to manipulate host toler-
ance by the secretion of various pathogenic effectors (La 
Spada et al. 2020; Wang and Jiao 2019), the use of resist-
ant rootstocks is still the most safe and long-term solu-
tion to control Phytophthora diseases (Kunta et al. 2020). 
Unfortunately, rootstock resistant to Foot Rot may not be 
resistant to Root Rot as well, and vice versa (Cacciola and 
Magnano di San Lio 2008; Kunta et al. 2020). For instance, 
commonly employed rootstocks including trifoliate orange 
and ‘Swingle’ citrumelo are highly tolerant to Root Rot, but 
susceptible to Foot Root (Graham 1990). Conversely, sour 
orange (C. aurantium) and ‘Carrizo’ citrange are tolerant to 
Foot Rot, but susceptible to Root Rot (Graham and Timmer 
1992). An additional severe limitation related to the use of 
Phytophthora-resistant rootstocks arises from the manda-
tory management of other serious citrus diseases, such as  

the citrus tristeza virus (CTV), a lethal and destructive  
disease affecting citrus trees grafted on sour orange (Dawson 
et al. 2015). The management of CTV has resulted in the 
substitution of sour orange with other CTV tolerant root-
stocks, mainly ‘Carrizo’ citrange (Garnsey et al. 1987). In 
the Americas and Spain, the spread of or the threat posed by 
Huanglongbing (syn. Citrus Greening), a disease caused by 
three phloem-inhabiting, Gram-negative bacteria known as 
‘Candidatus Liberibacter asiaticus’, ‘Candidatus Liberibac-
ter americanus’, and ‘Candidatus Liberibacter africanus’, to 
which all most popular CTV-tolerant rootstocks are suscep-
tible (Albrecht et al. 2012; Dala-Paula et al. 2019), has trig-
gered the search for Huanglongbing-tolerant rootstocks that 
are currently under evaluation (Alves et al. 2021; Arjona-
Lόpez et al. 2022; Bowman and Albrecht 2020; Kunwar 
et al. 2021). No information is yet to be available on the 
susceptibility of these new rootstocks to Phytophthora.

Regarding soil and water management, beneficial orchard 
management practices should be designed to minimize those 
conditions that are favorable to Phytophthora infection. For 
instance, removing soil and weeds from around the root col-
lar creates unfavorable conditions for gummosis, because 
it prevents the accumulation of moisture on the bark sur-
face thus decreasing the incidence of new infections and 
facilitating the healing of cankers. Raised soil beds avoid 
the burying of the collar and further contributes to mini-
mize soil waterlogging under the tree canopy (Cacciola and 
Magnano di San Lio 2008; El-Otmani 2006; Schillaci and 
Caruso 2006). Given the aquatic nature of Phytophthora 
spp. in their infectious phase, it goes without saying that a 
rational irrigation that avoids prolonged waterlogging condi-
tions can drastically reduce the proliferation of propagules 
and, consequently, lower infection rates (Cacciola and Mag-
nano di San Lio 2008).

Lastly, in the last decades, the incidence of Phytophthora 
Trunk Gummosis and Root Rot in citrus nurseries (Fig. 2d, 
e) in Italy has been substantially reduced by the use of sterile 
plastic containers to grow the plants combined with local-
ized drip irrigation and the use of mulch or gravel on the soil 
bed to prevent soil splashing.

Fungal and oomycete diseases affecting 
citrus fruits in pre‑harvest

Brown Rot caused by Phytophthora species

Phytophthora species are also the causative agents of a 
severe decay, known as Brown Rot, affecting citrus fruits 
in the field, although latent infections may manifest them-
selves in post-harvest fruits after an incubation period of 
10–15 days at low temperature (Cacciola and Magnano di 
San Lio 2008). Additionally, secondary infections may also 
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occur during post-harvest. In Brown Rot in the field, prop-
agules of Phytophthora spp. in the soil are splashed by rain 
and/or irrigation to fruits hanging on the lower canopy of 
the trees (Cacciola and Magnano di San Lio 2008; Ismail 
and Zhang 2004). Because of thunderstorms or hurricanes, 
propagules may reach even the upper part of the canopy.

The initial phase of the disease is characterized by a light 
discoloration of affected areas on the fruit surface, but as 
decay progresses, lesions becomes light brown, firm and 
leathery (Fig. 3a–d). Under conditions of high humidity, 
decay spreads rapidly in the fruits and a white mycelium 
appears on the infected areas. Fruits with Brown Rot have 
a rancid stink (Cacciola and Magnano di San Lio 2008; 
Feld et al. 1979) and can either fall to the ground or remain 
attached to the canopy (Fig. 3a, c) where they, eventually, 
mummify. Fruit Brown Rots is often associated to Leaf and 
Twig Blight.

Similarly to Foot and Crown Rot and Fibrous Root 
Rot, the main Phytophthora spp. associated to Brown Rot 
are P. citrophthora and P. nicotianae (Fig. 3d, e). Other 
Phytophthora species associated to Brown Rot include P. 
prodigiosa and P. mekongensis, which were recovered from 
symptomatic pomelo (C. maxima) fruits in Vietnam (Crous 
et al. 2017; Puglisi et al. 2017), as well as P. cactorum, P. 
citricola sensu lato, P. hibernalis and P. syringae, which 
colonize mainly detached fruits on the ground (Cacciola and 
Magnano di San Lio 2008).

The management of Brown Rot relies mainly on 
agronomical interventions, such as the pruning of the lower 
part of the canopy (tree skirting), a practice that eliminates 
those low hanging fruits and leaves, which would otherwise 
easily be reached by infested water splashes. This practice 
is often associated with the chemical treatment of the 
canopy employing phosphorous acid derivatives (mainly 
Fosetyl-Al) or copper-based products (Cacciola and 
Magnano di San Lio 2008; Ismail and Zhang 2004). Another 
agronomic practice to prevent fruit Brown Rot is controlled 
inter-row grassing to reduce soil splashing. In the last years, 
severe epidemic outbreaks of fruit Brown Rot have occurred 
in southern Italy because of Medicanes or Mediterranean 
cyclones. In the coming years and due to climate change, the 
frequency of these weather events is expected to increase in 
the Mediterranean basin (Hochman et al. 2022).

Anthracnose by Colletotrichum species

Colletotrichum is one of the most important genera of 
plant pathogenic fungi, responsible for several diseases 
in many crops worldwide (Cacciola et al. 2020; Cai et al. 
2009; Cannon et al. 2000, 2012; Gomes et al. 2021; Shu-he 
et al. 2021; Udayanga et al. 2013). Colletotrichum species 
were recently included in the list of the ten most important 
plant pathogenic fungi in the world (Dean et al. 2012; Shu-
he et al. 2021). Agricultural production losses caused by 

Fig. 3  Symptoms of Fruit 
Brown Rot (a-c) by Phytoph-
thora species on citrus from 
commercial orchards (Sicily, 
Italy) both in field (a and c) and 
after harvesting (b); d, (from 
left to right) direct isolation 
of Phytophthora citrophthora 
and Phytophthora nicotianae 
from fruit peel, pure culture on 
V8A with a stellate to petali-
form colony morphology and 
bi-papillate sporangium of P. 
citrophthora (scale bar: 25 μm); 
e, (from left to right) isolation 
of P. citrophthora from soil by 
leaf baiting, pure culture on 
V8A with the typical stolonifer-
ous colony morphology and 
papillate globose sporangium of 
P. nicotianae (scale bar: 25 μm)
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Colletotrichum spp. involve staple food crops growing in 
developing countries throughout the tropics and subtrop-
ics (Dean et al. 2012; Shu-he et al. 2021). Colletotrichum 
species can infect a multitude of plant genera (Damm et al. 
2012a, b; Farr et al. 2006; Perfect et al. 1999; Shu-he et al. 
2021), causing Anthracnose disease and postharvest decay 
on a wide range of tropical, subtropical and temperate fruits, 
grasses, vegetable crops and ornamental plants (Bernstein 
et al. 1995; Cacciola et al. 2012, 2020; Damm et al. 2012b; 
De Silva Dilani et al. 2017; Freeman and Shabi 1996; Lima 
et al. 2011; López-Moral et al. 2020; Shu-he et al. 2021; 
Talhinhas et al. 2018).

The most important disease imputed to Colletotrichum 
species in citrus fruits is Anthracnose, a serious and global 
limiting factor of food production globally (Khanchouch 
et al. 2017; Wang et al. 2021). Pre-harvest Anthracnose 
reduces yield, while post-harvest Anthracnose affects fruit 
quality, with negative consequences on fruit export and mar-
ketability (Fig. 4) (Wang et al. 2021).

The major Colletotrichum species involved in Anthrac-
nose of citrus fruits in the Mediterranean basin are C. gloe-
osporioides and C. karsti (Ben Hadj Daoud et al. 2019; 

Khanchouch et al. 2017). The etiology of the disease is 
strictly related to early infections in field, which immedi-
ately cause the first product losses by colonizing not only 
dead and senescent leaves, but also twigs and fruits (Riolo 
et al. 2021). In turn, infected plant parts and fruits support 
the production of acervuli with abundant conidia that are 
then dispersed by rain splashes to developing fruits. Once 
conidia reach the fruit surface, they germinate to pro-
duce appressoria and quiescent infections, which usually 
become active at fruit maturity. When quiescent infections 
become active, they progress rapidly leading to death of 
the infected tissue and to rapid sporulation by the pathogen 
on such necrotic portions of the fruit (Brown 1975; Naqvi 
2006; Timmer et al. 1998a). Lesions on the fruit surface 
remain firm, brown to brownish black and, in long term 
storage, the affected peel eventually develops a soft rot 
(Naqvi 2006).

The major strategy for the control of Colletotrichum 
Anthracnose includes actions aiming at reducing the pres-
ence and dispersion of inoculum of the pathogen. To this 
aim, growers employ agronomical practices such as the 
pruning of dead twigs from citrus trees and the removal of 

Fig. 4  Symptoms of Anthracnose by Colletotrichum gloeosporioides and seven-day-old pure cultures grown on PDA medium at 25 °C of the 
respective isolated strain: brown and brownish black spots caused by C. gloeosporioides isolates C1aT0 (a), C2k (b) and C3w (c)
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fallen fruit from the grove in association with the spraying 
of chemicals (Lombardo et al. 2023; Naqvi 2006).

Brown spot by Alternaria alternata

Alternaria Brown Spot (ABS) is one of the most important 
diseases of tangerines and their hybrids, worldwide (Arlotta 
et al. 2020). It is caused by the tangerine pathotype of the 
fungus Alternaria alternata, a typical necrotrophic pathogen 
(Fig. 5f, g) (Khanchouch et al. 2017; Peever et al. 2004).

ABS is prevalent in citrus production areas with a Medi-
terranean climate, characterized by cool, humid winters and 
hot, arid summers. It was firstly reported on ‘Emperor’ man-
darin in Australia in 1903, and subsequently it was detected 
in the Americas, the Mediterranean basin, South Africa, 
Iran and China affecting mainly ‘Fortune’ and ‘Nova’ man-
darin hybrids (Aglave 2018; Bassimba et al. 2014; Elena 
2006; Gai et al. 2021; Garganese et al. 2016; Khanchouch 
et al. 2017; Solel 1991). In Europe, it has been reported in 
Greece, Italy and Spain. In Italy and Spain, its emergence 
was concomitant to the diffusion of the cultivar ‘Fortune’ 
(Khanchouch et al. 2017).

Alternaria Brown Spot attacks young fruits, leaves, shoots 
and twigs, producing brown-to-black lesions surrounded 
by a yellow halo (Fig. 5a–e) (Dewdney 2021). The halo is 
caused by the fungal ACT-toxin (ACTT), which induces 
necrotic lesions on fruits and young leaves and causes defo-
liation and fruit drop in susceptible citrus genotypes (Arlotta 
et al. 2020; Khanchouch et al. 2017). Symptoms on fruits 
include necrotic brown circular lesions that may vary in 
size. Mature lesions have a corky appearance, and, in older 
lesions, the center may dislodge leaving tan-colored pock-
marks (Akimitsu et al. 2003; Khanchouch et al. 2017). Fruits 
can be infected in all developmental stages, but their suscep-
tibility is higher in the first four months following petal fall. 
Spring infections on young fruits may lead to premature fruit 
drop. Early fruit drop is common, especially if infection has 
occurred shortly after petal fall (Khanchouch et al. 2017). 
The disease represents a limiting factor for the production 
of mandarin or tangerine-like cultivars such as ‘Fortune’, 
‘Dancy’, ‘Minneola’, ‘Orlando’, ‘Nova’, ‘Guillermina’, 
‘Clemenpons’, ‘Esbal’, ‘Page’, ‘Lee’, ‘Sunburst’, ‘Encore’, 
‘Murcott’, ‘Michal’, ‘Winola’, ‘Ponkan’, ‘Emperor’, ‘Tang-
fang’ and ‘Primosole’ (Khanchouch et al. 2017). Conversely, 
the hybrid mandarin ‘Orri’ is resistant (Barry et al. 2015).

Fig. 5  Symptoms of Alternaria Brown Spot (ABS) on citrus fruits (a, b and c), shoots (d) and leaves (e) from a commercial orchard (Sicily, 
Italy); seven-day-old pure culture of the Alternaria isolates Aa1 (f) and Aa2 (g) grown on PDA (left) and MEA (right) at 25 °C
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Although control of ABS is still largely focused on the 
application of chemical active substances (see section "Tra-
ditional and new promising strategies for the management of 
citrus diseases incited by fungi and oomycetes in the citrus 
supply chain"), the reduction of damages achieved is often 
unsatisfactory (Cuenca et al. 2016). The last aspect forces 
growers to replace susceptible cultivars, such as ‘Fortune’ 
or ‘Nova’ mandarin hybrids, with resistant accessions, or to 
avoid planting of susceptible cultivars in areas were environ-
mental conditions are conducive to infections (Cuenca et al. 
2013). Thus, genetic resistance remains as the best option 
for disease control (Bhatia et al. 2003; Peres and Timmer 
2006). Because of constraints in most mandarin reproductive 
systems, such as polyembryony, breeding programs to obtain 
ABS-resistant hybrids have to include an ABS-susceptible 
cultivar as a parent (Cuenca et al. 2016). In this respect, 
many susceptible cultivars, including ‘Fortune’, ‘Murcott’, 
‘Ponkan’, ‘Dancy’, ‘Minneola’, ‘Nova’, ‘Fairchild’, ‘Fre-
mont’, ‘Page’, ‘Orlando’, ‘Pixie’ and ‘Daisy’ have been 
used as parents in successful resistance breeding programs, 
worldwide (Froelicher et al. 2012; JinPing et al. 2009; Nav-
arro et al. 2012; Recupero et al. 2005; Schinor et al. 2012; 
Williams 2012).

Septoria Spot of citrus

Septoria Spot of citrus (Septoria citri and other Septoria 
species of the S. protearum species complex) is a foliar 
and fruit disease affecting all citrus species. The most 
relevant symptoms are on fruit. It causes rind blemishes, 

compromising the marketability of fresh fruit. On mature 
fruit symptoms consist of large (more than one cm diam-
eter), often confluent, depressed brown to black, sunken 
blotches extending into the albedo (Fig. 6a, b). In case of 
severe infections, fruits develop an off-flavour and drop pre-
maturely (Fig. 6c). Symptoms may not appear until post-
harvest. Another syndrome caused by S. citri or closely 
related species of Septoria are reddish brown pits, 1 to 
2 mm in diameter, extending not deeper than the flavedo 
(Agosteo 2002). Septoria Spot is often misdiagnosed with 
Anthracnose or Brown Spot as symptoms of these diseases 
are similar and in culture on agar media S. citri grows 
more slowly than A. alternata and Colletotrichum species, 
which sometimes occur simultaneously on the same lesion 
(Fig. 6c, d). However, infections by Septoria can be distin-
guished by those caused by either Alternaria or Colletotri-
chum even at the stereomicroscope as Septoria, differently 
from the other two fungi, forms pycnidia on the necrotic 
lesions of the rind. Severe outbreaks of Septoria Spot were 
observed on mature fruits of late ripening sweet orange 
cultivars in Sicily as a consequence of hailstorms. Menge 
(2000) reported the disease is more severe in years with 
high rainfall levels and low or rapidly fluctuating tempera-
tures. Septoria citri survives on citrus trees on dead twigs 
and leaves as a saprobe. Although it is ubiquitous in most 
citrus growing areas, including the Mediterranean region, 
it is considered a quarantine organism in Western Australia 
and some countries of East Asia, such as South Korea and 
Vietnam. Management strategies of Septoria Spot are sub-
stantially the same applied for Anthracnose.

Fig. 6  Symptoms of Septoria 
Spot on fruits of sweet orange 
‘Tarocco Meli’ from a commer-
cial orchard in Sicily (a); fruits 
of sweet orange ‘Tarocco Meli’ 
affected by Septoria Spot fallen 
to the ground (b); colonies of 
Septoria citri on PDA, after 
15 days incubation at 24 °C (c 
and d)
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Citrus Black Spot by Phyllosticta citricarpa

Phyllosticta citricarpa (teleomorph: Guignardia citri-
carpa) is a quarantine pathogen listed in the Annex II 
Part A of the Commission Implementing Regulation (EU) 
2019/20724. The Commission Delegated Regulation (EU) 
2019/17025 also listed P. citricarpa as a priority pest. It 
is included in the EPPO A1 List (EFSA Panel on Plant 
Health et al. 2018; EPPO 2020). Phyllosticta citricarpa 
is also a quarantine organism in the USA (Schirmacher  
et al. 2019). The major disease associated with this patho-
gen is Citrus Black Spot (CBS), a foliar and fruit decay 
affecting the majority of Citrus species (Baldassari et al. 
2008; EFSA 2014a, b; EPPO 2020; Kotzé 1981; Paul et al. 
2005). CBS is present in Asia, Australia, South Africa 
and South America and recently has been reported from 
Tunisia (Boughalleb-M’Hamdi et al. 2020). In the last few 
years, repeated interceptions of P. citricarpa in citrus fruit 
stocks from South Africa and Argentina at entry points of 
the European Union (EU) have resulted in the temporary 
suspension of the import of citrus fruit from these coun-
tries. Phyllosticta citricarpa has also been intercepted at 
the EU frontier in a stock of sweet orange fruits imported 
from Egypt, where the disease was reported to be estab-
lished (Khalil et al. 2022).

Spread of the pathogen responsible for CBS occurs via 
spores, including both windborne ascospores produced in 
pseudothecia (ascocarps) and waterborne conidia produced 
in pycnidia (Guarnaccia et al. 2017).

Ascospores are considered the primary source of inocu-
lum in the CBS disease cycle, while conidia in rainwater 
are mostly responsible for the short downward dispersal of 
the pathogen (Guarnaccia et al. 2017; Spósito et al. 2011). 
Alternate wetting and drying cycles of the leaves combined 
with mild to warm temperature fluctuations are favorable 
conditions for maturation of pseudothecia and ascospore 
(Fourie et al. 2013; Guarnaccia et al. 2017; Hu et al. 2013).

CBS is associated with various symptoms on fruits (Guar-
naccia et al. 2019; Kotzé 1981). The most commons are 
‘hard spots’ (Fig. 7a, b), which are characterized by sunken, 
pale brown necrotic lesions with a dark reddish brown raised 
border, often containing pycnidia (EPPO 2020; Guarnac-
cia et al. 2017, 2019). Further symptoms are: (i) virulent 
spots, which are sunken necrotic lesions without defined 
borders mostly on mature fruits; (ii) false melanose, con-
sisting of small black pustules usually in a tear stain pattern; 
(iii) freckle (Fig. 7c), cracked or speckled spot (Guarnaccia 
et al. 2019).

Leaf and twig symptoms rarely occur on sweet orange, 
mandarin and other commercial citrus species, but they 
are frequently reported on lemons. They appear as round, 
small, sunken necrotic lesions with a yellow halo (Fig. 7d) 
(Guarnaccia et al. 2019; Kotzé 1981).

Temperature is a crucial factor for disease development. 
Rapid temperature increments, typically from 20° to 27 °C, 
when fruits are ripe stimulate the appearance of CBS symp-
toms and lead to formation of a significant number of fruit 
lesions (Guarnaccia et al. 2019; Lee and Huang 1973). High 
light intensity can further facilitate fruit lesion development, 
thus the side of the canopy more exposed to sunlight typi-
cally shows more symptoms (Guarnaccia et al. 2019). Old 
age and physiological stress also appear to facilitate the 
development of CBS (Guarnaccia et al. 2019; Kotzé 1981).

A precise diagnosis of P. citricararpa is complicated by 
two main factors. First, necrotic spots are generic symptoms 
that can be caused by other Phyllosticta species (Guarnaccia 
et al. 2019; EFSA Panel on Plant Health 2014; EPPO 2020) 
and even by other ascomycetes (e.g. Septoria citri and Cyto-
sporina citriperda). Second, the wide morphological and 
molecular similarities among species in the genus Phyllos-
ticta (e.g. Phyllosticta paracapitalensis and Phyllosticta par-
acitricarpa) (Guarnaccia et al. 2019; Santa Olga Cacciola, 
personal communication). For instance, both P. citricarpa 
and P. paracitricarpa can cause CBS symptoms on citrus 
fruits and the two species differ from each other just for some 
nucleotides related to tef1 and LSU genes (Guarnaccia et al. 
2017). A range of molecular tests, including multiplex meth-
ods for the detection of different citrus pathogens simultane-
ously, have been developed to detect P. citricarpa (Ahmed 
et al. 2020; EPPO 2020). Nevertheless, these tests cannot 
distinguish P. citricarpa from the closely related species P. 
paracitricarpa and P. citriasiana. Only recently, a new real-
time PCR protocol, still under validation by EPPO, appar-
ently makes possible the exclusive detection of P. citricarpa 
by targeting the tef1 gene (Zajc et al. 2022). There is still a 
need for practical, accurate, robust and cost-effective diag-
nostic methods for the rapid and early detection of P. citri-
carpa on imported citrus fruit stocks at international borders.

Post‑harvest fungal diseases of citrus

Green and Blue Molds by Penicillium species

Penicillium digitatum and Penicillium italicum stand out 
as the most destructive post-harvest diseases (Bhatta 2022; 
Cheng et al. 2020; Kassim et al. 2020) of citrus fruits.

The geographical distribution of these two species 
includes all of the citrus-producing areas in the world and 
they have been also described in countries that only import 
but do not produce citrus (Frisvad and Samson 2004). Both 
P. digitatum and P. italicum are obligate wound pathogens 
that infect the fruits through peel injuries produced in the 
field, in the packing house or during the fruit commerciali-
zation chain (Fig. 8) (Bautista-Baños 2014; Palou 2014).

Penicillium digitatum, the causative agent of citrus Green 
Mold, is the more serious and widespread pathogen of the 
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two Penicillia (Abo-Elnaga 2013; Kanan and Al-Najar 2008; 
Plaza et al. 2004; Batta 2007). This disease is considered the 
main cause of economic losses in citriculture, resulting in 
90% of the total post-harvest losses of citrus fruits (Costa 
et al. 2019; Ismail and Zhang 2004; Macarisin et al. 2007; 
Perez et al. 2017; Vu et al. 2018).

At the early stages, wound infections from which fruit 
spoilage starts (La Spada et al. 2021) develop a soft area 
on the fruit peel surrounding the wound. This symptom 
is sometimes referred to as ‘Clear Rot’ (Ismail and Zhang 
2004). Warm temperatures promote the development of a 
white mycelium on the soft area and shortly after (usually 
within three days in standard conditions), the production 
of green conidia commences (Costa et al. 2019; Ismail and 
Zhang 2004; La Spada et al. 2021; Vu et al. 2018). As the 
invasion of citrus peel progresses, the mycelium produces 
cell wall-degrading enzymes that cause a break-down of the 
fruit cell walls. The infection proceeds quickly, and within 

a few days, the entire fruit results totally molded and cov-
ered by green conidia (Fig. 8b) (Ashebre 2015; Ismail and 
Zhang 2004).

In order to reduce the occurrence of the disease, it is 
imperative to pick and carefully handle fruits in the field, 
minimizing the production of wounds (Palou 2014). How-
ever, the large amounts of fruit to be moved, the high labor 
costs and, in many cases, the lack or low availability of con-
scientious, skilled and well-trained teams of pickers, are often 
factors that limit the adoption of proper harvesting practices. 
Additionally, harvests should be avoided after rainfall or 
when fruits are wetted by free water; these conditions pro-
mote both sporulation by the pathogen and excessive turgid-
ity of the fruits, which in turn makes fruits more susceptible 
to mechanical damage and subsequent infection (Eckert and 
Eaks 1989; Palou 2014). Furthermore, some sweet orange 
cultivars, e.g. ‘Lempso’, are particularly prone to Penicillium 
mold infections in the field (Fig. 8a), further complicating 

Fig. 7  a, b and c, Hard and freckle spots by Phyllosticta citricarpa on peel of mature lemon fruits from a commercial orchard (Tunis, Tunisia); 
d, hard spot lesions on lemon leaves; e, seven-day-old sporulating cultures of P. citricarpa grown on PDA medium at 25 °C
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disease control. One of the main causes responsible for 
the spread of the Green Mold in post-harvest is the lack of 
appropriate measures of sanitation in packing house facilities, 
storage rooms and containers, which result in a significant 
presence of inoculum (Palou 2014). Green Mold can be also 
caused by the spread of conidiafrom diseased fruit onto adja-
cent wounded fruits (Ismail and Zhang 2004).

Penicillium italicum is the second most important spe-
cies affecting post-harvest citrus (Costa et al. 2019; Poppe 
et al. 2003); it is the causative agent of the disease knowns 
as Blue Mold of citrus. The organism infects citrus fruit 
via injuries, similarly to P. digitatum. Citrus Blue Mold 
occurs in all citrus-producing regions of the world. Initial 
lesions are similar to lesions caused by P. digitatum, but 
the conidia are blue in color and the area of the citrus peel,  
where they appear, is typically surrounded by a narrow  
band of white mycelium growing on the water-soaked rind. 

With time, the entire surface of the fruit is completely cov-
ered by conidia (Fig. 8c), then, the fruit begins to shrink and, 
if exposed to air, becomes a slimy shapeless mass (Bautista-
Baños 2014; Palou 2014).

Blue Mold is more common in fruit held in cold stor-
age during the summer and it can spread in packed cartons 
more readily than Green Mold, causing a so called ‘nest’ 
of decayed fruit (Ismail and Zhang 2004). In infected cit-
rus fruits Penicillium species produce several secondary 
metabolites, including mycotoxins, such as patulin and 
rubratoxin B (Rovetto et al. 2023b).

Because of their high destructiveness, the effective con-
trol of citrus molds by Penicillium species is unfortunately 
strictly dependent on the employment of specific chemicals 
(see section "Traditional and new promising strategies for 
the management of citrus diseases incited by fungi and 
oomycetes in the citrus supply chain").

Fig. 8  a, b Sweet orange fruits 
affected by green (Penicillium 
digitatum) and blue (P. italicum) 
molds; c, severe status of decay 
of mature sweet orange fruits 
affected by green (left) and blue 
(right) molds (note the white 
mycelium at the advancing mar-
gin of the lesion and green —
left—/ blue —right— conidia); 
d, seven-day-old cultures of P. 
digitatum isolate P1PP0 (left) 
and P. italicum isolate T4N0 
(right) grown on PDA medium 
at 25 °C
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Sour Rot by Geotrichum candidum var. citri‑aurantii

Sour Rot caused by Geotrichum candidum var. citri-aurantii 
is one of the most serious wound-mediated citrus diseases 
worldwide (Fig. 9), second in importance only to Penicillium 
molds (Ismail and Zhang 2004; Naqvi 2006). It has been 
reported on all citrus cultivars in the majority of citrus grow-
ing areas. It is particularly frequent in fruits in long storage 
at cold temperatures (Ismail and Zhang 2004; Naqvi 2006). 
Sour Rot is more frequent on mature to over-mature fruits 
characterized by the presence of a high amount of moisture 
on the peel surface (Ismail and Zhang 2004; Naqvi 2006).

Propagules of the fungus are typically present in the 
soil; they can reach the fruit surface blown by wind, in 
infested soil particles splashed by water, or by the direct 
contact of the fruit with soil (Ismail and Zhang 2004; 
Naqvi 2006). Further postharvest spread pathways are 
known, for instance contaminated fruits can spread the 
pathogen through drenching equipment, soak tanks, pallet 
bins, washer brushes, belts and conveyors, and by contact 

with infected fruits in storage containers (Ismail and Zhang 
2004; Naqvi 2006). All infections are wound-mediated, and 
occur mostly in wounds that affect the albedo tissue (Ismail 
and Zhang 2004; Naqvi 2006). Initial symptoms are water-
soaked lesions, light to dark yellow and slightly raised. In 
this early disease phase, the damage to the peel cuticle is 
distinctive and compared to what happens in fruits affected 
by molds by Penicillium spp., the peel cuticle can be easily 
removed from the epidermis (Ismail and Zhang 2004; 
Naqvi 2006). Decayed fruit tissue is typically characterized 
by a sour stink that attracts fruit flies, which in turn spread 
the pathogen to other injured fruit during storage (Ismail 
and Zhang 2004; Naqvi 2006). The disease develops 
rapidly at warm temperatures, with an optimum of about 
27 °C (Ismail and Zhang 2004; Naqvi 2006).

Sour Rot could be partially prevented by sanitation con-
trol and low-temperature storage. However, chilling injury 
and temperature fluctuation during transport and marketing 
still represent the major predisposing factors (Liu et al. 2009;  
Mercier and Smilanick 2005).

Fig. 9  a, b and c Mature sweet orange fruits affected by Sour Rot; d seven-day-old culture of Geotrichum candidum var. citri-aurantii isolate 
G-1N0 grown on PDA medium at 25 °C
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Mycotoxins in products from citrus  
supply chain

The consequences related to infection by fungal pathogens 
do not just affect the mere quality of the produce, but can 
have direct consequences on the health of the consumers. It 
is well known that some pathogens of citrus fruits are able 
to produce mycotoxins whose presence in fresh fruit peels 
and juice pose a serious threat to human health (Awuchi 
et  al. 2021; Fernández-Cruz et  al. 2010). Mycotoxins 
exhibit properties of acute, subacute, and chronic toxicity 
in animals and/or humans; some of these have also been 
reported as carcinogenic, mutagenic, and teratogenic 
(Fernández-Cruz et al. 2010; Lu et al. 2022; Omotayo et al. 
2019). Mycotoxins are secondary metabolites produced 
by fungi and can act as virulence and pathogenicity 
factors during the infection process (Masi et  al. 2020; 
Stracquadanio et al. 2021). They can be produced before 
and after harvest, and their levels may increase during post-
harvest, handling, and storage (Stracquadanio et al. 2021). 
The proliferation of fungi and the production of mycotoxins 
on food are favored by specific environmental factors, such 
as humidity, temperature, as well as by the physical and 
chemical composition of the plant matrix. This is one of 
the reasons why the presence of a mycotoxigenic fungal 
species is not necessarily associated with the presence of 
critical amounts of mycotoxins (Drusch and Ragab 2003). 
Additionally, variation in mycotoxin production among 
fungal genotypes of the same species further complicates 
the matter (Drusch and Ragab 2003; Logrieco et al. 1990). 
A major mycotoxigenic fungus in the citrus supply chain 
is A. alternata (Fernández-Cruz et al. 2010; Logrieco et al. 
2009; Masiello et al. 2020; Patriarca 2016). Alternaria 
alternata produces a number of mycotoxins, including 
the dibenzo-α-pyrones alternariol (AOH), alternariol 
monomethyl ether (AME) and altenuene (ALT), altertoxin 
I and II (ATX-I and -II) and tenuazonic acid (TeA) a 
tetramic acid (Aloi et al. 2021; Barkai-Golan and Paster 
2008; Fernández-Cruz et al. 2010; Magan and Olsen 2004). 
ALT and ATX-I were the most acutely toxic mycotoxins in 
mice, with a median lethal dose  (LD50) of 50 and 200 mg/
kg, respectively; the toxicity of TeA  (LD50 115 mg/kg) 
was sub-acute, while only weak toxicity was reported for 
AOH and AME  (LD50 400 mg/kg) (Fernández-Cruz et al. 
2010). Culture extracts of A. alternata can be mutagenic in 
various microbial and cell systems and carcinogenic in rats 
(Fernández-Cruz et al. 2010). It has also been suggested 
that A. alternata could be involved in the etiological factors 
leading to human oesophageal cancer in China (Dong et al. 
1987; Zhao et al. 2022). Finally, ATX-1, AOH and AME 
have also been shown to be mutagenic (Dong et al. 1987; 
Scott 2001). As expected, the production of A. alternata 

mycotoxins has been detected both under natural infection 
conditions and in experimental inoculation trials involving 
different citrus fruits, including lemons (Barkai-Golan 
and Paster 2008; Logrieco et al. 1990), sweet oranges and 
tangerines (Barkai-Golan and Paster 2008; Logrieco et al. 
1990; Magnani et al. 2007; Rovetto et al. 2023b; EFSA 
Panel on Contaminants in the Food Chain 2011).

To date, many methods are available for the detection of 
mycotoxins (Shi et al. 2018). Enzyme-linked immunosorbent 
assay (ELISA), High-performance liquid chromatography 
(HPLC), liquid chromatography-tandem mass spectrometry 
(LC199 MS/MS), gas chromatography (GC), and thin-layer 
chromatography (TLC) are techniques commonly used for 
mycotoxin analysis worldwide (Thomas et al. 2017; Magan 
and Olsen 2004; Shi et al. 2018; Wang et al. 2022). Beside 
A. alternata, P. digitatum can produce mycotoxins in citrus 
fruit. High levels of the mycotoxins patulin and rubratoxins 
B were detected in mummified blood orange fruits infected 
by this fungus (Rovetto et al. 2023b).

Recent advancements have improved the safety of food 
in accordance with EU and EPPO toxicological standards 
(Fumagalli et al. 2021). Among these, liquid chromatography 
coupled to mass spectrometry (LC–MS/MS) allows for the 
rapid, cost-effective and precise detection of mycotoxins 
(De Dominicis et al. 2012; Lau et al. 2003; Ostry 2008; 
Scott 2001; Tanaka et al. 2006). The LC–MS/MS currently 
represents the most flexible and effective (i.e. high 
sensitivity and selectivity) technique employed to determine 
contaminants by chemicals in a broad array of food matrices 
(De Dominicis et al. 2012). Some examples of the efficacy of 
these new approaches include the detection of pesticides and 
veterinary drug residues (widely employed in agriculture and 
farming), natural toxins (secondary metabolites, produced 
by various fungi, that can grow on several agricultural 
commodities both in field and during storage), environmental 
contaminants, processing and packaging contaminants, and 
spoilage markers (De Dominicis et al. 2012).

Traditional and new promising strategies 
for the management of citrus diseases 
incited by fungi and oomycetes in the citrus 
supply chain

To date, citrus disease management practices in the citrus 
supply chain, are all oriented to avoid and/or minimize dis-
ease predisposing factors through an integrated approach 
(Naqvi 2006). Up to date knowledge on the etiology of the 
diseases, especially regarding aspects related to the mecha-
nisms of infection and the environmental conditions favoring 
the pathogen development, could be useful to plan ‘smart’ 
management strategies. In this respect, the adoption of 
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minimal requirements, such as improved cultural practices, 
the regular monitoring of the disease appearance paired 
with the monitoring of weather conditions and the imple-
mentation of improved post-harvest handling, sanitation of 
equipment, transport and storage conditions (Naqvi 2006), 
could represent necessary and sufficient measures to safe-
guard yield and, at the same time, to guarantee the safety 
of the environment and of human health. For example, it is 
well known that a constant storage temperature 6 °C or less, 
almost totally inactivates the sporulation and growth of the 
post-harvest pathogens responsible for the majority of prod-
ucts losses, namely P. digitatum, P. italicum and G. candi-
dum var. citri-aurantii (Plaza et al. 2003). However, the gen-
eralized disregard of the above-listed minimum requirements 
in the citrus supply chain, together with the increasingly 
frequent unpredictability of climatic conditions, inevitably 
require the adoption of ‘foolproof’ solutions, mostly repre-
sented by the timely application of pesticides (Naqvi 2006).

In 2019, the “pesticide world ranking per country” 
reported China, USA, Argentina, Thailand, Brazil, Italy, 
France, Canada, Japan and India in the top ten of the 
major consumers; in that year, these countries contributed 
to a global usage of about 2.0 million tons of pesticides, 
of which, 17.5% were fungicides (Sharma et  al. 2019). 
Fungicides employed for the control of citrus diseases 
in the field include copper, commonly applied as a foliar 
spray to prevent citrus Brown Rot and occasionally used for 
reducing the sporulation of P. tracheiphilus in Mal Secco 
(Deb et al. 2020; Migheli et al. 2009). Systemic fungicides, 
like metalaxyl, Al ethyl-phosphyte (or fosetyl-Al) and 
metalaxyl-M (or mefenoxam), are also used for controlling 
P. nicotianae and P. citrophthora (Aparicio-Durán et al. 
2021; Cacciola and Magnano di San Lio 2008; Davis 1982; 
Farih et al. 1981; Hao et al. 2021; Timmer and Castle 1985; 
Timmer et al. 1998b). In Europe, the chemical control of 
fruit decays occurring in pre-harvest, between post-bloom 
and harvest, is commonly carried out by spraying the newly 
registered fungicides pyraclostrobin and fludioxonil for the 
control of fruit diseases caused by Alternaria (Rots and 
Brown Spot) and C. gloeosporioides (Anthracnose) (Avenot 
and Michailides 2015; Jaouad et al. 2020).

As discussed above, some fruit decays, such as ‘Brown 
Rots’ by Phytophthora species, are often characterized 
by latent pre-harvest infections with symptoms being 
manifested later during post-harvest. The traditional 
management of this disease involves specific actions which 
begin in the field and continue to the storing stage in the 
warehouse. Apart from the delopyment of good science-
based pre-harvest agronomical (thoughtful pruning of 
plants and soil management) that are known to reduce 
inoculum, additional treatments include the spraying of the 
canopy with Fosetyl-Al or copper-based products in the field 
(Cacciola and Magnano di San Lio 2008; Ismail and Zhang 

2004) and a range of customary post-harvest measures, 
including the drenching of fruits with sanitation compounds 
such as chlorine or peroxyacetic acid (Federico La Spada, 
personal communication; Ismail and Zhang 2004). Fruits 
moved internationally are further chemically treated to 
control Penicillium spp. using compounds such as imazalil 
and thiabendazole (Bhatta 2022; Chen et al. 2019a; Davé 
et al. 1989; La Spada et al. 2021; Palou et al. 2002). The 
employment of fungicides has detrimental side effects for 
human and environmental health, including the presence of 
substances with acute toxicity in fruit peels (EFSA 2006, 
2007, 2010, 2014b) and the accumulation in soil, water and 
plants, of non-biodegradable active compounds (Gikas et al. 
2022; Stracquadanio et al. 2021).

Apart from the toxicological aspects related to the use of 
fungicides, one of the major drawbacks of their use is related 
to the emergence of resistant strains of the pathogen (Arslan 
2015; Brent and Hollomon 2007; Davé et al. 1989; Holmes 
and Eckert 1999; Kanetis et al. 2007; Strange and Scott 
2005). The indiscriminate and excessive use of fungicides 
in crops has been identified as one of the main causes 
behind the emergence of resistant pathogen populations 
(Avenot and Michailides 2015; Brent and Hollomon 2007; 
Da Cruz Cabral et al. 2013; Stracquadanio et al. 2021). In 
particular, the emergence of strains of Penicillium resistant to 
imidazole and bendimidazole, has prompted the development 
of several other synthetic fungicides, including fludioxonil 
and pyrimethanil, that are new effective and EU-approved 
alternatives for the chemical control of these post-harvest 
fruit diseases (Chen et al. 2019b; Davé et al. 1989; Eckert 
and Ogawa 1988; Errampalli and Crnko 2004; Kanetis et al. 
2007).

Increasingly restrictive laws and regulations have reduced 
or prohibited the use of pesticides while promoting eco-
friendly strategies of disease management (Fenta et  al. 
2019; Talibi et al. 2014). In accordance with the European 
Directive 2009/128/EC, which establishes a frame of 
community action for the sustainable use of pesticides in 
order to reduce the risks for human health while satisfying 
the growing request for high-quality, safe and eco-friendly 
products, alternative means to synthetic fungicides have 
been actively identified and tested (European Parliament 
2009; Helepciuc and Todor 2021). These alternatives 
include the use of antagonistic microorganisms or of their 
bio-derivatives (Du Jardin 2015; La Spada et  al. 2020; 
Stracquadanio et al. 2020; Riolo et al. 2023) as well as the 
use of natural substances (botanicals and other organic 
substances) and other natural antimicrobial compounds (El 
Boumlasy et al. 2021; La Spada et al. 2021; Wang et al. 
2014; Yang et al. 2021). The United States Environmental 
Protection Agency (EPA) has defined 'Biopesticides' the 
pesticides derived from such natural materials as animals, 
plants, bacteria, and certain minerals (https:// www. 

https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides#classes
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epa. gov/ ingre dients- used- pesti cide- produ cts/ what- are-  
biope stici des# class es). According with the definition of 
EPA, Biopesticides fall into three major classes: Biochemical 
pesticides, Microbial pesticides and Plant-Incorporated-
Protectants (PIPs). A growing body of literature reports 
effective results using these alternative approaches in the 
citrus supply chain (Chen et al. 2020; Droby et al. 2002; 
Ferreira et al. 2020; Ghosh et al. 2016; Jagtap et al. 2012; 
Moraes Bazioli et al. 2019; Talibi et al. 2014; Wilson and 
Wisniewski 1989). Interestingly, some of these alternative 
methods are effective not only because of their direct action 
toward the pathogen, but also thanks to their ability to elicit 
plant (or fruit) defense responses (La Spada et al. 2020, 
2021).

Below, is a list of successful alternative citrus disease 
management options. Penicillium spp. have been controlled 
by the application of harmless inorganic salts (Fallanaj 
et al. 2016; Youssef et al. 2012, 2014), of humic acid and 
garlic (Abo-Elnaga 2013), of seaweed extracts and plant 
derivatives (Bhatta 2022; Chen et  al. 2019a; La Spada 
et al. 2021; Pangallo et al. 2017), as well as by the use of 
antagonist microorganisms, especially yeasts belonging to 
the genera Kloeckera, Pichia and several species of Candida 
(Droby et al. 2002; El-Ghaouth et al. 2000; Lima et al. 1997; 
Taqarort et al. 2008; Wilson and Chalutz 1989; Wilson 
and Wisniewski 1989). Among these, Candida oleophila 
stands out for its marked antagonistic activity toward fungal 
pathogens, attained in a complex way through competition 
for nutrients and space (Brown et al. 2000; Dukare et al. 
2018; Freimoser et al. 2019; Zhang et al. 2020), production 
of lytic enzymes (Bar-Shimon et al. 2004) and induction of 
host systemic resistance (Droby et al. 2002; Dukare et al. 
2018; Freimoser et al. 2019; Zhang et al. 2020). However, 
caution should be exerted about the actual efficacy of these 
recent alternative options, given that in vivo results are often 
far less promising than results obtained in vitro. This is the 
case, for instance, of applications of C. oleophila that did 
not result in the effective colonization of citrus peel by the 
putative biocontrol agent. (Brown et al. 2000), highlighting 
the importance of adopting complete testing protocols that 
include realistic in vivo experimentation. Additionally, 
even when both in vivo and in vitro results are promising, 
one has to determine if the products used are safe for 
humans, socially acceptable and allowed by current laws 
and regulations. This may be the case, for instance, of the 
use of processed food waste, shown to be effective, both in 
vivo and in vitro, in the inhibition of growth of the fungal 
pathogens P. tracheiphilus, A. alternata, C. gloeosporioides, 
P. digitatum and P. italicum, as well as of the oomycetes P. 
nicotianae and P. citrophthora (El Boumlasy et al. 2021).

The need to proceed ‘safely’ when attempting to control 
pre- and post-harvest decay of citrus, together with the need to 
limit the impact and spread of mycotoxigenic fungi, imposes 

the peremptorily adoption of state-of-the-art technologies 
and strategies of management. The early detection and 
correct identification of the pathogens involved represent 
the first prerequisites for the implementation of effective and 
rational integrated disease management strategies (Garrido 
et al. 2012; Ray et al. 2017; Santonocito et al. 2023). This is 
especially true for the citrus supply chain, which is affected 
by pathogens of quarantine concern infecting fruit, such as 
Phyllosticta citricarpa (EPPO 2020). Traditionally, fungal 
pathogens have been indirectly identified and detected 
either by the recognition of disease symptoms and/or by the 
microscopy-based observation of morphological structures 
on infected plant tissues (Agrios 2004; Erwin and Ribeiro 
1996; Ray et al. 2017). Even if pure cultures are available, 
thanks in part by the use of selective media, the generalized 
similarity of morphological characters makes it extremely 
difficult and laborious to distinguish phylogenetically close 
taxa (Crous et al. 2012; Jung and Burgess 2009; Scanu et al. 
2015; Scott et al. 2009; Woudenberg et al. 2013). Starting 
in 2004, with the adoption of a PCR based assay (Hayden 
et al. 2004) to identify the pathogen Phytopthora ramorum 
(Davidson et al. 2002; Swain and Garbelotto 2004), a vast 
range of nucleic acids-based methods are increasingly 
becoming valuable tools in all aspects of plant protection 
(Aslam et al. 2017; Biasi et al. 2016; Jung et al. 2019; Leakey 
et al. 2009; Mammella et al. 2011). DNA amplification-based 
methods make it possible to overcome the main limits of the 
traditional methods of identification and detection, allowing 
for the discrimination of closely related taxa from tiny 
quantity of propagules even in absence of signs or symptoms 
(Aslam et al. 2017; Cooke et al. 2007). The majority of 
official protocols for the early detection of quarantine plant 
pathogens mainly rely on Polymerase Chain Reaction (PCR)-
based methodologies, both in its traditional (conventional 
PCR) and in the most advanced real-time (quantitative 
RT-PCR) form. PCR-based diagnostics may be inadequate 
for cost-effective large-scale and routine applications (Wong 
and Medrano 2005). In this respect, during the last years the 
Recombinase Polymerase Amplification (RPA) is becoming 
a molecular tool of choice for the rapid, specific, and cost-
effective identification of pathogens (Lobato and O’Sullivan 
2018; Rovetto et al. 2023a). Likewise, NGS approaches are 
increasingly being used in diagnostics (Del Frari et al. 2019; 
Johnston-Monje et al. 2017; La Spada et al. 2022; Morales-
Cruz et al. 2018; Ruiz Gómez et al. 2019), even if not at the 
regulatory level (Aragona et al. 2022).

Conclusions

New green technologies offer practical smart and ecof-
riendly solutions that can increase the sustainability and 
safety of the citrus fruit value chain. Particularly interesting 

https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides#classes
https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides#classes
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are the perspectives of innovation in the post-harvest sector, 
a sector that so far has relied prevalently on the efficacy of 
synthetic fungicides. It is likely that a decisive contribution 
to the modernization and adaptation of this sector to higher 
environmental, phytopathological and toxicological stand-
ards will come from the public and private industry research 
committed to the development of new biocontrol agents, 
natural antifungal substances, analytical methods to detect 
mycotoxins, edible fruit biocoating, biodegradable and recy-
clable fruit packaging and rapid molecular diagnostics to 
detect fungus and oomycete pathogens. The availability of 
these technical tools will make feasible an innovative inte-
grated management strategy to reduce the impact of diseases 
in the citrus fruit value chain.
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