New paper in The American Naturalist

Abstract

Specialization in pollination systems played a central role in angiosperm diversification, yet the evolution of specialization re- mains poorly understood. Competition through interspecific pollen transfer may select for specialization through costs to male fitness (pollen lost to heterospecific flowers) or female fitness (heterospecific pollen deposited on stigmas). Previous theoretical treatments of pol- lination focused solely on seed set, thus overlooking male fitness. Here we use individual-based models that explicitly track pollen fates to explore how competition affects the evolution of specialization. Results show that plants specialize on different pollinators when visit rates are high enough to remove most pollen from anthers; this increases male fitness by minimizing pollen loss to foreign flowers. At low visitation, plants generalize, which minimizes pollen left un- dispersed in anthers. A model variant in which plants can also evolve differences in sex allocation (pollen/ovule production) produces sim- ilar patterns of specialization. At low visitation, plants generalize and allocate more to female function. At high visitation, plants specialize and allocate equally to both sexes (in line with sex-allocation theory). This study demonstrates that floral specialization can be driven by selection through male function alone and more generally highlights the importance of community context in the ecology and evolution of pollination systems.

New paper in PLoS Biology

Abstract

Recent analyses of the fossil record and molecular phylogenies suggest that there are fundamental limits to biodiversity, possibly arising from constraints in the availability of space, resources, or ecological niches. Under this hypothesis, speciation rates decay over time and biodiversity eventually saturates, with new species emerging only when others are driven to extinction. This view of macro-evolution contradicts an alternative hypothesis that biodiversity is unbounded, with species ever accumulating as they find new niches to occupy. These contrasting theories of biodiversity dynamics yield fundamentally different explanations for the disparity in species richness across taxa and regions. Here, we test whether speciation rates have decayed or remained constant over time, and whether biodiversity is saturated or still expanding. We first derive a general likelihood expression for internode distances in a phylogeny, based on the well-known coalescent process from population genetics. This expression accounts for either time-constant or time-variable rates, time-constant or time-variable diversity, and completely or incompletely sampled phylogenies. We then compare the performance of different diversification scenarios in explaining a set of 289 phylogenies representing amphibians, arthropods, birds, mammals, mollusks, and flowering plants. Our results indicate that speciation rates typically decay over time, but that diversity is still expanding at present. The evidence for expanding-diversity models suggests that an upper limit to biodiversity has not yet been reached, or that no such limit exists.