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ABSTRACT

Aim This study seeks to document and compare historical temporal and spa-

tial components of fire regimes in two watersheds in mixed conifer forests of

the western slope of the Sierra Nevada, California, USA.

Location Watersheds in the southern Sierra Nevada (Sugar Pine, 2358 ha)

and north-central Sierra Nevada (Last Chance, 3021 ha), California, USA are

compared.

Methods Temporal (frequency, return interval, season) and spatial (extent,

fire rotation, spatial mean fire interval) fire regime metrics were reconstructed

from fire scar samples. Superposed epoch analysis (SEA) was used to examine

relationships between fire occurrence and the Palmer drought severity index

(PDSI) at each site. Thin plate splines were introduced as a tool for interpolat-

ing historical fire extent from dendroecological data. Point fire return intervals

were compared between sites to better understand possible influences of histor-

ical Native American burning practices.

Results Differences emerged between sites in temporal and spatial fire regime

metrics. The northern site had longer fire return intervals, more synchronized

fire years, fewer point intervals < 4 years, longer fire rotation period and longer

spatial mean fire interval. The northern site showed a significant reduction in

PDSI values during fire years, whereas this climate–fire relationship in the

southern site was likely decoupled by frequent Native American burning. Thin

plate spline interpolation effectively reduced discontinuities at sample points

compared to inverse distance weighting methods.

Main conclusions Differences in both temporal and spatial fire regime met-

rics between sites were likely due to interplay in latitudinal influence on cli-

mate as well as differential Native American burning practices. Reconstruction

of historical fire areas via geographical interpolation of fire scar data holds

great promise for spatially explicit fire frequency reconstruction. The use of

thin plate spline interpolation methods has the potential to reduce the impact

of ‘false negatives’ in dendroecological data from frequent-fire forests.
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INTRODUCTION

Fire is a key ecological process in US western forests that

impacts nutrient cycling, vegetative regeneration, species

composition, stand structure and ecosystem resilience (Hol-

ling, 1973; Agee, 1993). A century of fire suppression and

logging practices of the early 20th century have greatly

altered many American forests that once burned frequently,

creating more dense (Parsons & DeBenedetti, 1979) homoge-

nous forests that are less resilient to drought, insect attack

and are more likely to burn at high severity (Mallek et al.,

2013). Understanding how to manage these forests to retain
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their ecosystem services (Hassan et al., 2005) and maintain

resilience to climate change (Bonan, 2008) and uncharacter-

istically large and severe fire will be one of the most impor-

tant challenges in this century.

Although the future promises to be different from the past

and historical conditions may not be appropriate targets for

future management (Millar et al., 2007), understanding his-

torical disturbance regimes, with which native plants and

animals have evolved over thousands of years, is vital for

building resilient ecosystems that can accommodate the

uncertain future that lies ahead (Landres et al., 1999). There

is growing evidence that the heterogeneity created by histori-

cal fires is vital for the maintenance of species diversity and

ecosystem resilience (North, 2012). Understanding spatial

and temporal components of historical fire regimes can help

us incorporate natural or planned disturbance into manage-

ment plans aimed to promote ecosystem resilience.

Temporal components of historical fire regimes in the

mixed conifer forests of the Sierra Nevada have been well

studied (Kilgore & Taylor, 1979; Swetnam, 1993; Stephens &

Collins, 2004; Scholl & Taylor, 2010), but there is still high

uncertainty regarding spatial components of fire regimes in

forests that historically experienced frequent, low- to moder-

ate-severity fire (Taylor & Skinner, 2003). There has been

greater success reconstructing spatial patterns in forests that

historically experienced stand-replacing fires because ample

evidence of these fires still exists. Estimations of spatial com-

ponents of high severity, stand-replacing fires, have been

conducted using tree stand age, tree height, density and com-

position (Heinselman, 1973; Agee et al., 1990; Sibold et al.,

2006) yet this evidence depends on high tree mortality rates,

which rarely occupy more than small patches in areas that

historically burned frequently (Collins & Stephens, 2010;

Stephens et al. 2015).

The most reliable evidence remaining in frequent, low-

severity fire regimes is the presence of fire-scarred trees and

a mosaic of multiaged stands (Swetnam, 1993). Unfortu-

nately, these data types present challenges for reconstruction

of the spatial patterns of fire. Since trees often survive low-

severity fires and recruitment is typically chronic, tree ages

tell us little about the spatial patterns of frequent low- to

moderate-severity fires. Fire scars are evidence of the pres-

ence of fire, but trees that experience fire often do not scar.

In fact, Stephens et al. (2010) have shown that when the fire

interval is < 10 years, the probability of a previously scarred

tree to scar again is only 5% in the mixed conifer forests of

the Sierra Nevada and Baja California, Mexico. These ‘false

negatives’ create spatially noisy datasets that make recon-

structing spatial patterns of fire in these forest types difficult.

These problems have been partially overcome by using

area-based rules to infer approximate fire sizes from the pro-

portion of samples or geographical plots that record scars

each year (Taylor & Beaty, 2005) or by using expert opinion

to construct fire polygons (Heyerdahl et al., 2001). These

methods have been effective, but are difficult to reproduce,

and require subjective decision-making. More recently,

researchers have used automated methods in a GIS to pro-

duce objective fire areas across space and time. Hessl et al.

(2007) evaluated Thiessen polygons, kriging and inverse dis-

tance weighted interpolation methods to reconstruct burned

areas from fire scar data. Similarly, Collins & Stephens

(2007) and Farris et al. (2010) used Thiessen polygons to

reconstruct known fire areas from fire scar samples. Kernan

& Hessl (2010) used an automated, spatially explicit inverse

distance weighted interpolation method to create spatially

explicit fire interval maps. This method has tremendous pro-

mise for understanding historical spatial fire dynamics via

fire scar data, but the inverse distance weighting interpola-

tion method can be problematic for data that contains many

false negatives, such as fire scar data from frequent-fire for-

ests. As a result, the maps produced from this method can

display inaccuracies around sample points due to the exact

nature of the interpolation.

In this manuscript, we reconstruct and compare both spa-

tial and temporal fire regime metrics for two watersheds in

the mixed conifer forest of the Sierra Nevada, California,

USA. For each site, we explore the application of thin plate

splines (TPS) as a spatially explicit fire-mapping interpola-

tion method with the ability to overcome problems intro-

duced by false negatives often present in fire scar data from

frequent-fire forests. We also examine and compare the

influence of climate and possible influence of Native Ameri-

can burning on fire occurrence.

Study sites

Two mixed conifer forest watersheds were studied in the

Tahoe and Sierra National Forests on the western slope of the

Sierra Nevada of California (Fig. 1). The northern watershed,

Last Chance (LC) is approximately 2358 ha, with elevation

ranging from 800 to 1850 m above sea. Sugar Pine (SP), the

southern watershed, encompasses 3021 ha with elevations

ranging from 1200 to 2200 m. Annual mean precipitation,

most of which falls as snow between November and April, is

118.2 cm at LC (1990–2008; Hell Hole RAWS) and 109.1 cm

at SP (1941–2002, Yosemite National Park RAWS). Mean

monthly temperatures are 3 °C and 2 °C in January and 21 °C
and 18 °C in July for LC and SP, respectively. Soils are shallow,

well-drained and developed from Mesozoic aged granite.

Vegetation on these landscapes is typical of the west slope of

Sierra Nevada: a mixed conifer forest dominated by white fir

(Abies concolor Gordon & Glend.), Douglas-fir (Pseudotsuga

menziesii (Mirb.) Franco) and incense-cedar (Calocedrus

decurrens Torr. Florin), with sugar pine (Pinus lambertiana

Dougl.), ponderosa pine (Pinus ponderosa Dougl.) and Califor-

nia black oak (Quercus kelloggii Newb.) appearing as a codomi-

nant at variable densities throughout. Mixed conifer forests

differ between sites in that there is no Douglas-fir in the SP

site.

Native American activity in the SP study area was likely

quite high before European settlement (Freedman, 2013). Up

until 1901, Bass Lake (6 km from the study site) was a large,
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lush meadow which was a convergence spot for Sierra Miwok,

Chuckchansi Yokut and Western Mono tribes, who used fire

extensively to keep the adjacent forest open, encourage herba-

ceous growth for game animals and to produce vegetative

growth conducive to basket weaving and arrow construction

(Anderson, 2005; Freedman, 2013). In 1901, Willow creek was

dammed for the production of hydroelectric power, thus pro-

ducing Bass Lake. From 1901 to 1931, the Sugar Pine Lumber

Company operated kilometres of narrow gauge railroad in and

around the SP study site (Johnston, 1984).

Little detailed information exists about Native American

populations and activity in the LC site, although the Nisenan

people once inhabited the forests of north-central Sierra

Nevada and actively used fire in these forests to manage for

diverse resources for at least 2000 years (Cook, 1976). An epi-

demic of malaria was introduced to northwest California in

1833 which decimated their population and the discovery of

gold in California in 1849 resulted in widespread persecution,

killing and destruction of villages that destroyed them as a

viable culture by 1851 (Wilson & Towne, 1978).

MATERIALS AND METHODS

Sample collection and processing

In order to attain a geographically distributed collection of

fire scars across the study areas, we sampled the gridded

network of forest inventory plots (500 m intervals, n = 75

for SP and 71 for LC) within treatment watersheds used in

the Sierra Nevada Adaptive Management Project (Fig. 1).

Each grid point was visited and 0–5 pieces or fire-scarred

wood were sampled with a chainsaw within a 100-m radius

of each point. Samples were also opportunistically collected

when travelling from one grid point to the next. A total of

148 samples were collected at SP and 134 samples were col-

lected at LC (Table 1). Resulting fire scar density was 0.04

samples per hectare at both sites, which is comparable to

sample densities in the fire history literature (Hessl et al.,

2007).

Fire dates were determined by sanding and crossdating

each sample (Stokes & Smiley, 1968) against independent

master tree-ring chronologies developed from increment

cores from 30–50 trees without fires scars within the study

area and/or nearby chronologies from Blodgett Research

Forest (Stephens & Collins, 2004) and the international

tree-ring database (https://data.noaa.gov/dataset/interna

tional-tree-ring-data-bank-itrdb, Snow White Ridge, Lem-

mon Canyon, Merced Grove and Oak Flat). If possible,

scar position within the annual ring was used to assign

seasonality to the fire event (Dieterich & Swetnam, 1984).

Fire dates were checked by at least two researchers before

being entered and summarized in FHX2 (Grissino-Mayer,

2001). If samples contained too few rings to cross-date,

were not able to be cross-dated, or were too decayed to

Figure 1 Location of the northern (Last

Chance) and southern (Sugar Pine) fire
history study sites in the Sierra Nevada

ecoregion (grey), California. Fire scars
(stars) were sampled from trees within the

forest inventory plot grid (circles) and
opportunistically when moving from one

plot to another.
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sand or visualize, they were not included in the present

analysis (n = 30 in SP and 32 in LC).

Temporal fire interval calculations

The time period from 1750 to 1900 was selected as a window

in which to analyse historical fire regimes for both study

areas. This time frame was chosen because the fire scar sam-

ple depth drops considerably prior to 1750 and fire suppres-

sion practices were initiated shortly after the formation of

the US Forest Service in 1905 (Scholl & Taylor, 2010). There

have been reports of the fire intervals increasing in the sec-

ond half of the 1800s due to Euro-American settlement in

the Klamath Mountains (Fry and Stephens, 2006) and North

Coast Range (Skinner et al., 2009), but Scholl & Taylor

(2010) did not detect a significant difference in fire interval

statistics before 1850 (pre-settlement) and 1850–1904 (settle-

ment) in a similar forest type in Yosemite National Park;

nor do we detect a difference in fire frequency during the

second half of the 1800s. Thus, our window of time between

1750 and 1900 should adequately represent the fire regime in

the study areas before modern day fire suppression.

Point fire intervals (PFI) and composite fire intervals

(CFI) were calculated in FHX2 (Grissino-Mayer, 2001). PFI

are calculated from the intervals in each sample tree sepa-

rately, and represent the fire return interval to a single point

and are a more conservative estimate of fire frequency. CFI

are calculated using all the samples in the study and may be

filtered including only years that scar a certain per cent of

the available samples (typically 10–25%).

Stephens et al. (2010) have shown in similar mixed coni-

fer forests that the probability of a previously scarred tree

(‘recording’ sample) re-scarring from a wildfire is only 5%

if the interval since the last fire is < 10 years. We hypothe-

size that PFI of three or fewer years may be indicative of

human ignitions rather than lightning-ignited fires (Finney

& Martin, 1992), as humans have the ability to ignite and

re-ignite fires to facilitate fire spread even when fuel mois-

tures or fuel continuity would not support unassisted fire

spread. To investigate the possible influence of Native

American burning practices in each site, we determined the

number of samples in each site that showed PFI of three or

fewer years as well as the proportion of all point intervals

in each site that were of three or fewer years. Differences

between sites were examined with a two-sample test for

equality of proportions.

Spatially explicit fire area reconstructions

Fire scar data from recording samples during this study per-

iod were used to construct spatial mean fire interval (SMFI)

maps for each study area (Kernan & Hessl, 2010). For each

fire scar sample, its fire years and geographical coordinates

were input into a spatial points data frame in the R statistical

package (R Development Core Team, 2010). Individual sam-

ples were treated as binary point data across the study area.

Fire perimeter maps were constructed for each year in which

four or more samples recorded a fire to eliminate small spot

fires. To do this, new spatial point data frames were con-

structed from only the recording samples for each fire year.

Samples were coded as one (recording a fire) or zero (not

recording a fire). For each year, the binary point data was

then interpolated to construct a grid with an estimated value

between zero and one in every pixel. Two interpolation

methods were used and will be compared in the following

analysis:

1. Inverse distance weighting (IDW) – a deterministic, exact

interpolation method that predicts a value for any unmea-

sured location by using the known values surrounding the

prediction location. IDW is an exact interpolator, meaning

the prediction surface passes exactly through the value of

each sample, causing the maximum and minimum values of

the interpolated surface to occur at sampled points (1 and 0

respectively). Measured values that are nearest to the predic-

tion location will have greater influence on the predicted

value at that unknown point than those farther away (Cres-

sie, 1993). Users can specify a power for IDW interpolation,

which controls how quickly local influence diminishes with

distance – lower power values give more influence to distant

points and create smoother surfaces (Hessl et al., 2007). In

addition to the power, users control the number of neigh-

bours included in the local calculations. Hessl et al. (2007)

and Kernan & Hessl (2010) both use IDW interpolation to

create SMFI maps using a power of two and 12 nearest

neighbours. These same parameters were employed in the

current study using the gstat package (Pebesma, 2004).

Table 1 Summary of fire scar samples, scar position and point

fire intervals from both Sugar Pine and Last Chance study areas
in the North American Sierra Nevada.

Sugar Pine Last Chance

Size (ha) 3021 2358

Total samples collected 148 134

Total samples cross-dated 118 (80%) 102 (76%)

Live trees cross-dated 61 (52%) 42 (41%)

Dead trees cross-dated 57 (48%) 60 (59%)

Incense-cedar samples 101 (86%) 51 (50%)

Ponderosa pine samples 17 (14%) 37 (36%)

Sugar pine samples 0 (0%) 12 (12%)

Douglas-fir samples 0 (0%) 1 (1%)

Number of dated scars 802 659

Earliest dated fire scar 1607 1577

Most recent dated fire scar 1947 1943

Scars with inferred seasonality 688 (86%) 621 (94%)

Middle earlywood scars 10 (2%) 7 (1%)

Late earlywood scars 23 (3%) 13 (2%)

Latewood scars 316 (46%) 73 (12%)

Dormant position scars 339 (49%) 527 (85%)

Samples containing at least one

point fire interval of three or

fewer years

22 (19%) 7 (7%)

Point fire intervals of three or

fewer years

29 (6%) 7 (1%)
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2. Thin plate spline (TPS) – a deterministic, inexact inter-

polation method, which is a smoothed version of a spline

(an exact interpolation method). We used the TPS algorithm

from the ‘Fields’ package (Furrer et al., 2009) in the R statis-

tical package (R Development Core Team, 2010). This algo-

rithm fits a TPS surface to irregularly spaced data with a

smoothing parameter that is chosen by generalized cross-vali-

dation, which minimizes the sum of squared errors of the fit-

ted surface. The resulting surface from this inexact

interpolation does not necessarily pass through the values of

the sample points and generally gives a smoother fit (Craven

& Wahba, 1978) than exact interpolators.

Threshold values to differentiate burned from

unburned pixels

In order to classify pixels ranging in value from 0–1 as

burned or unburned, a threshold must be chosen as a cut-

off. We tested the difference between two thresholds. First,

we used the proportion of scarred samples relative to the

total number of recording samples (hereafter called ‘propor-

tion scarred’), which has been used as a threshold for fire

perimeter mapping (Kernan & Hessl, 2010) as well as predic-

tive vegetation mapping (Franklin, 1998). As a more conser-

vative threshold for fire area estimations, we also used half

of the maximum value (‘half-max’) of the interpolated sur-

face for the TPS interpolation method (the half-max value

was always higher than the proportion scarred value in our

dataset).

Each interpolation method produced a surface of interpo-

lated values ranging from 0–1 for each fire year between

1750 and 1900. In each of these surfaces, the pixels greater

than or equal to the threshold for that method were inferred

to burn in that fire year. Those below the threshold were

inferred to have not burned. The fire size was calculated for

each fire year for each interpolation method. A map repre-

senting the number of times each pixel burned was then cre-

ated from the sum of these resulting fire area maps and used

to create a map of the number of fire intervals for each

pixel.

Additionally, a ‘recording ring depth’ map was made for

each interpolation method. To do this, the number of

recording rings between 1750 and 1900 were calculated for

each tree sample and the resulting values were interpolated

with the same IDW and TPS methods described above.

Finally, to compute a Spatial Mean Fire Interval (SMFI)

map, we divided the recorder ring depth map by the interval

number map (Kernan & Hessl, 2010). Additionally, for each

resulting SMFI map, the pixel values were averaged to esti-

mate the SMFI for that site as a whole. These were computed

for the three combinations of interpolation method and

threshold values examined in this study: (1) IDW with a

threshold of the proportion of samples that scarred, (2) TPS

with a threshold of the proportion of samples that scarred,

and (3) TPS with a threshold of half the maximum interpo-

lation value.

Annual area burned, average fire size, and fire

rotation period

For each fire year, site and interpolation method, we calcu-

lated the fire size by summing the area of all pixels classified

as burned in each fire year. These values were divided by the

size of the study area to compute a proportion of the study

area burned. For each site, these metrics were averaged

across all analysis years to yield an average fire size and mean

per cent of the study area burned.

Fire rotation periods (Heinselman, 1973) were calculated

for each study area and interpolation method by summing

the total area burned (including areas that burned more than

once) during our 150-year analysis period and then using

the following formula.

Fire Rotation Period ¼ Total years in analysis period=

proportion of the study area that

burned during this period

Spatial mean fire interval map analysis

To examine the relationship of slope aspect and SMFI, values

from each of the SMFI maps were extracted to the sample

grid points in each site in order to examine if significant dif-

ferences existed in SMFI between slope aspect categories.

Each point was classified with a predominant aspect of north

(316°–45°), east (46°–135°), south (136°–225°) or west

(226°–315°). Grid points in the various aspect categories

were examined for variation in SMFI using a distribution-

free Kruskal–Wallis H test (Scholl & Taylor, 2010).

Influence of climate on fire occurrence

To examine the influence of proxy climate on fire occurrence

at interannual time-scales, we used superposed epoch analy-

sis (SEA) (Grissino-Mayer, 2001). SEA determines relation-

ships between events (i.e. fire years) and climate by testing

for departures of mean climate values from the period mean

during, before, and after fire event years using Monte Carlo

simulation with 1000 interactions to derive bootstrapped

confidence interval estimates (Swetnam, 1993). Palmer

drought severity index (PDSI) was used as a climate proxy

in this study (Cook et al., 1999; gridpoint 47). PDSI is a

composite climate index that integrates immediate and

lagged precipitation and temperature values to estimate

drought severity. Negative values of PDSI represents drought,

while positive values represent more climatic moisture. SEA

was run for all of the identified fire years in each site as well

as for fire years in which 10, 15 and 20% of the recording

samples were scarred in each site. Significant departures from

expected climate values were identified for 5 years before

each fire year and 2 years following each fire year (Taylor &

Beaty, 2005).
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Edge effects of interpolation methods

Undesirable edge effects can be introduced by spatial inter-

polation of point data and often vary by interpolation

method, the relative location of sample points in reference to

the edge of the interpolated surface and the perimeter to area

ratio of the interpolated surface (Helzer & Jelinski, 1999). To

investigate the impact of edge effects in each interpolation

method compared in this study, we calculated the annual

and average fire area, fire rotation period and SMFI of vari-

ous sized interpolation surfaces. We calculate these metrics

for the full interpolation extent (defined by the maximum

and minimum latitude and longitude of the full set of fire

scar samples for each site) as well as extents that were itera-

tively croped equally on all sides by 10-m increments until

50% of the study area was removed. Although the interpola-

tion extent was iteratively cropped smaller and smaller, the

point data for each fire year remained the same, effectively

reducing the prediction at the ‘edge’ of the data points with

each iteration of a smaller extent (and leaving an increasing

number of the sample points outside the extent of the inter-

polation). The resulting curves for each fire metric were plot-

ted as a function of proportion of the study area cropped

from the perimeter. If the areas closer to the edge of the

interpolated surface consistently have a significantly different

proportion of the area classified as burned across fire years

(versus the areas in the interior of the interpolation), we

would expect to see significant changes to fire metrics as the

edge of each interpolation is successively cropped from the

extent used to calculate the fire statistics. Each curve was

examined visually for any abrupt discontinuities that would

indicate severe edge effects and were also fit to a linear

regression model to examine if the slope was significantly

different from zero, indicating a trend in the metric with a

change in the extent of the interpolation surface.

RESULTS

Temporal fire regime characterization

In total, 118/148 fire scars (80%) were successfully cross-

dated at SP and 102 (76%) at LC (Table 1). The PFI for SP

and LC were 14.3 years and 17.5 years, respectively, which

represents the average time required for fire to re-scar the

same sample within the study area (Table 2). Many individ-

ual fire scar samples contained PFI of three or fewer years,

especially in the SP site, which showed significantly more

samples with at least one point interval of three or fewer

years (P = 0.02) as well as a higher proportion of all point

intervals that were of three or fewer years (P = 0.0006,

Table 1).

The CFI for all fires was 1.1 for SP and 1.2 years for LC,

and increased to 5 and 6.1 years, respectively, when only

fires that scarred 10% of the recording trees were considered.

In the SP site, there were not enough fire events that scarred

20% or 25% of the recording samples to calculate a statistic

for the 20 or 25% CFI. For LC, the composite 20% and 25%

scarred mean fire return interval was 11.0 and 19.8 years,

respectively (Table 2).

Spatially explicit fire regime characterization

For each fire year, there was a mean of 89.4 recorder samples

(trees that have been previously fire scarred) at SP and 80.1

at LC (Table 3). On average seven samples (8%) were

scarred during each fire year at SP and 11.3 (14.5%) at LC.

Interpolation methods and thresholds had similar trends in

fire shapes for fire years, but varied in the resultant fire sizes

and continuity (Fig. 2). For IDW, the predicted fire perime-

ters often had unburned pockets around samples that did

not record a fire (Fig. 2). When the same threshold was

Table 2 Point and composite fire-return interval (FRI) statistics for the Sugar Pine (SP) and Last Chance (LC) study areas for 1750-

1900 in the Sierra Nevada. SD = standard deviation; NA = an insufficient number of samples to calculate a value.

Number of

intervals Mean FRI (yr)

Median FRI

(yr) SD (yr) Min. (yr) Max (yr)

Site SP LC SP LC SP LC SP LC SP LC SP LC

Point (PFI) 500 475 14.3 17.5 11.0 15.0 11.3 12.8 2 2 76 91

Composite all 140 120 1.1 1.2 1.0 1.0 0.3 0.5 1 1 3 3

Composite 10% 27 24 5.0 6.1 3.0 4.5 4.5 4.7 1 1 18 19

Composite 20% NA 9 NA 11.0 NA 9.0 NA 9.1 NA 2 NA 33

Composite 25% NA 5 NA 19.8 NA 15.0 NA 14.3 NA 7 NA 35

Table 3 Fire scar sample summary during fire years analysed in the 1750–1900 period (n = 74 years for SP and 39 years for LC when 4

or more samples scarred). SD = standard deviation.

Minimum Maximum Mean � SD

Site SP LC SP LC SP LC

Number recording 26 33 116 102 89.4 � 23.8 80.1 � 21.6

Number scarred in fire year 4 4 23 32 7.0 � 3.6 11.3 � 8.2

Per cent scarred in fire year 3 4 25 45 8.0 � 4.0 14.5 � 9.8
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used, IDW interpolation had a lower mean fire size than did

the TPS interpolation method (Table 4). Within TPS, chang-

ing the threshold from proportion scarred to half-max

resulted in smaller fire areas (Table 4). Per cent of the study

area burned and fire rotation period are both a function of

the area burned and followed similar trends (Table 4).

Spatial mean fire interval maps from the various interpola-

tion methods showed similar general trends in the sections

of the study area that had the highest and lowest fire inter-

vals, but varied in the predicted values (Figs 3 & 4). In SP

and LC the IDW interpolation had an intermediate SMFI of

5.81 and 12.12 years, respectively, and showed the greatest

discontinuities in the predicted values for both sites. The

TPS interpolation with a proportion scarred threshold

showed the lowest SMFI of all the compared methods with

an average of 3.12 years and 8 years for SP and LC, respec-

tively. Using the half-max threshold, the TPS interpolation

method resulted in the highest SMFI of 7.27 and 21.79 years

for SP and LC, respectively (Fig. 3, Table 4).

Influence of climate on fire occurrence

When all fire years were tested, the LC site showed a signifi-

cant reduction in average PDSI values on fire years (n = 39)

versus non-fire years (Fig. 5), whereas the SP site showed no

significant departure from average PDSI values on the fire

year (n = 74) versus non-fire years examined. When only fire

years that scarred 10, 15 or 20% of the recorder samples

were considered, the LC site showed significant reduction in

PDSI values on the fire year for 10, 15 and 20% recorder

samples scarred (n = 25, 15 and 9 fire years respectively);

whereas the SP site did not show significant reduction in

PDSI values for 10% scarred (n = 21), but did for 15%

scarred years (n = 9, Fig. 5; the SP site did not have enough

fire years that scarred 20% of recording samples to success-

fully conduct SEA analysis).

Edge effects by interpolation method and site

In general, no obvious discontinuities in fire rotation or

SMFI existed in the edge effect curves generated in our anal-

ysis (Fig. 6) and consistent trends in edge effects for the

compared interpolation methods were not obvious. For TPS

half-max and IDW, there was a lack of consistent slope

direction in edge effects for both fire rotation period and

SMFI between the two sites. The only consistent result for

interpolation methods between sites in edge effects is for the

TPS proportion scarred, that shows a significant negative

slope on both fire rotation period as well as SMFI for both

the LC and SP sites.

There were more robust patterns of edge effect at the site

level (across all interpolation methods). Namely, for the LC

site, all interpolation methods showed significantly negative

slopes for both fire rotation and SMFI (Fig. 6), whereas for

the SP site, half of the six slopes tested were not significantly

different from zero.

Slope aspect and fire frequency

No significant differences were detected in SMFI between

plots in the four classes of slope aspect in any of the three

interpolation methods for either site. Figure 7 shows the TPS

half-max burn interval map with the topography of the SP

site.

DISCUSSION

Latitude and fire frequency

When only examining temporal dynamics, the two sites dif-

fered slightly in their fire regime statistics, showing less fre-

quent fires and more synchrony in fire scar formation in the

northerly LC site (Table 2). This is consistent with other

studies in North America that have shown more frequent

burning as latitude decreases (Heyerdahl et al., 2001). These

differences become more pronounced when spatial dynamics

are considered and modelled (Table 4). For instance, the

10% composite mean fire return interval for LC (6.1 years)

is 22% longer than that for SP (5.0 years, Table 2), although

when spatial dynamics are explicitly modelled using the TPS

half-max method, the fire rotation period for LC (9.3 years)

is 69% greater than that for SP (5.5 years). Similarly, the

spatial mean fire return interval for LC (8.0 years) was 156%

larger than that for SP (3.12 years). The increased difference

in fire regime statistics when spatial dynamics of fire are

explicitly modelled indicates that intervals alone relate only a

fraction of the information available from fire scar samples.

Without the explicit incorporation of geography, fire regime

characterization from fire scar samples results in homoge-

nized statistics for the area of interest, which may mask

important within-site heterogeneity in historical fire occur-

rence. The resulting burn interval maps from the methods

employed in this study aim to characterize important spatial

variation in historical fire occurrence (Figs 3 & 4) and will

have great benefits for better understanding spatial hetero-

geneity, which is increasingly becoming a management objec-

tive for maintenance of species diversity and ecosystem

resilience (North, 2012).

Comparison of interpolation methods

An exact interpolation method will yield more accurate val-

ues at sample points, but given the nature of this dataset

(with many ‘false negatives’), the IDW interpolation does

not appear to be the best choice for reconstructing spatial

fire dynamics due to the resulting discontinuities at sample

locations (Fig. 3). There is similar evidence of these artefacts

around sample points in the IDW fire area maps published

by Hessl et al. (2007) and Kernan & Hessl (2010), but these

maps do not show the extreme discontinuities that resulted

in the current IDW fire interval map. This is likely due to

the longer fire intervals in the higher latitude forests of

Washington State in these studies. With longer fire intervals,
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the scarring probability for recording trees is increased (Ste-

phens et al., 2010), thus reducing the likelihood of false neg-

atives which are the source of these discontinuities.

Thin plate spline is a good tool for smoothing noisy data

(Craven & Wahba, 1978), and effectively eliminated the

interpolation artefacts around sample points for our dataset.

However, accuracy at sample points is sacrificed for this

smoothness. For datasets with many false negatives, such as

the fire scar data presented in this study, a smoothing inter-

polation method likely gives a more realistic surface than

exact interpolators such as IDW. With any interpolation

method, the cut-off value for classifying pixels as burned or

not has important consequences for the predicted fire sizes

and fire regime descriptors, and deserves further study.

Without a known history of spatial fire dynamics in these

areas during the study period, it is hard to quantitatively

evaluate the accuracy of the interpolation results from this

study. But we can compare the predicted fire sizes to other

studies in nearby areas and with the well-accepted non-

spatially explicit fire statistics calculated with fire scar

samples. In a recent study in a nearby forest in Yosemite

National Park, Scholl & Taylor (2010) not only estimated the

mean fire size for a comparable study period to be between

203–266 ha but also made the qualification that many of

these fires burned up to the edge of their study area, so were

likely larger. In this study, the TPS interpolation method

using the half-max threshold predicted the smallest mean fire

size and the closest to Scholl and Taylor’s estimate with a

mean fire size of 565 ha (Table 4).

Thin plate splines have promise for estimating spatial pat-

terns of fire for areas that historically burned frequently and

will likely have the presence of a large number of false nega-

tives in the fire scar record. These false negatives create

undesirable artefacts around most of the sample points with

the IDW interpolation method. Likewise, the TPS method

with the proportion scarred threshold predicted fire sizes

that were too large in relation with Scholl & Taylor’s (2010)

estimates, and we believe consistently overestimates fire size.

We found, as did Kernan & Hessl (2010), that the SMFI

was an intermediate value between the PFI, which is a con-

servative estimate of fire frequency, and the all sample CFI,

which tends to estimate artificially low fire intervals (espe-

cially for large sample sizes). Other advantages of the SMFI

are that it will explicitly model within site heterogeneity in

fire occurrence, and with adequate sampling density, it

should be scale independent, which CFI are not (Kou &

Baker, 2006).

High fire frequency, lack of fire scar synchrony and

decoupling of climate–fire relationship in SP site

Curiously, in the SP site, there were not enough years in

which 20% of the samples were scarred to calculate this

composite statistic. One potential explanation of the lower

level of synchrony of fire scars include the occurrence of

many small fires due to high Native American use and burn-

ing in this area (Finney & Martin, 1992; Swetnam et al.,

2016). Bass Lake is in close proximity to the SP study area

and was a vitally important confluence of at least three

Native American Tribes: Sierra Miwok, Chuckchansi Yokut

and Western Mono. These native people used this area

extensively and burned the adjacent forest to keep it open,

encourage herbaceous growth for game animals and produce

vegetative growth conducive to basket weaving and arrow

construction (Anderson, 2005; Freedman, 2013). This fre-

quent use would likely have impeded fuel accumulation and

fostered low-intensity fires and a landscape of fire-scarred

trees that contain short fire intervals and non-synchrony in

scar formation, which has also been found in similar forests

in the Sierra San Pedro Martir, Mexico (Evett et al., 2007).

Native American fire management is likely also responsible

for the decoupling of fire–climate relationships often

observed in fire history studies (Taylor & Beaty, 2005; Swet-

nam et al., 2016; Fig. 5). In prescribed fires today, it is not

uncommon for fire spread to falter in areas of fuel disconti-

nuity or high fuel moisture, necessitating strategically placed

ignitions and re-ignition. Native American burning was likely

similar and facilitated burning even when climate and fuel

conditions would likely not support natural fire spread,

which could effectively decouple the fire–climate relationship

that makes successful fire spread much more likely during

drought years. In the SP site, 19% of the fire scar samples

Table 4 Comparison of mean area burned, per cent of the study area burned, fire rotation period and spatial mean fire interval (SMFI)

for inverse distance weighting (IDW) and thin plate spline (TPS) interpolation (Interp.) methods with thresholds of the proportion of
samples with a fire scar relative to the total number of recording samples in a particular year (Prop. scarred) and half of the maximum

value in the interpolated grid for a particular year (Half-max.).

Interp. method Threshold for area burned

Mean area

burned (ha) in

years with 4 or

more trees

recording fire

Mean per cent

of study area

burned in years

with 4 or more

fires recorded

Fire rotation

period (yr) SMFI (yr)

SP LC SP LC SP LC SP LC

IDW Prop. scarred 884 782 29% 32% 6.8 11.6 5.81 12.12

TPS Prop. scarred 1105 980 37% 42% 5.5 9.3 3.12 8.00

TPS Half max. 565 514 19% 22% 10.7 17.6 7.27 21.79
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Figure 4 Comparison of fire scar-interpolated burn interval maps (top row) for Last Chance site, Sierra Nevada, California, pixel value

distribution for each map and mean pixel value (middle row), and annual area burned (bottom row) for IDW with the proportion of
recording samples scarred threshold (left column), thin plate spline (TPS) with the proportion of recording samples scarred threshold
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contained point intervals of three or fewer years and 6% of

all the fire intervals for the entire site were shorter than

4 years (Table 1). This is likely a conservative estimate of

point fire frequency as many fires of such short intervals

likely did not re-scar existing recorder trees (Stephens et al.,

2010). We believe these widespread and extremely short fire

intervals represent a signal of Native American burning (Fin-

ney & Martin, 1992) and provide a likely explanation for the

decoupling of fire–climate relationships in the SP site.

However, even in the presence of a high level of anthro-

pogenic burning, a climate-fire relationship is still detectable

in the SP site when only fire years that scarred at least 15%

of the recording samples are used for SEA analysis (n = 9 fire

years, Fig. 5). During these years, there is a significant reduc-

tion in the PDSI, which likely resulted in more extensive fires

and/or a higher likelihood for trees to form fire scars.

Aspect and fire frequency

When there are discreet features that separate slope aspects

(such as steep ridges or large rivers) that can effectively limit

the spread of fire, then differences in fire frequency are more

likely between varying aspects or topographic facets (Heyer-

dahl et al., 2001; Taylor & Skinner, 2003). The current study

sites did not have extreme terrain features that would likely

limit fire spread, making it unsurprising that differences in

fire frequency between slope aspects were not detected

(Scholl & Taylor, 2010).

Edge effects

There was no evidence of extreme edge effects for any of the

interpolation methods examined in this study. Instead,

trends were idiosyncratic and seemed to depend heavily on

the perimeter to area ratio of the study areas. For instance,

the LC site was a more elongated watershed and as a result

had a 19% larger perimeter to area ratio than SP

(0.00087 m�1 vs. 0.00073 m�1 respectively). As a result, in

the LC site, all slopes for all interpolation methods were sig-

nificantly different from zero for both SMFI and fire rotation

period, whereas only half of the slopes were different from

zero in the SP site (Fig. 6).
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Figure 5 Superposed Epoch Analysis (SEA) for reconstructed PDSI (Cook et al., 1999) in LC and SP for 5 years before and 2 years
after each fire year. Dark grey indicates a significant departure from mean PDSI values determined from bootstrapped confidence

interval estimates (95%) based on 1000 Monte Carlo simulations. On the left, (a) and (b) show SEA for all fire years in each site
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Figure 7 Spatial mean fire interval map for

the TPS half-maximum threshold
interpolation method overlaid on

topography for the Sugar Pine study site,
Sierra Nevada, California. Fire scar sample

locations are shown with black dots.
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Edge effects were likely buffered by the analysis period of

150 years, in which final burn interval maps and spatial fire

regime statistics were the combination of many fire years (74

fire years in the SP site and 39 in LC). Overall, edge effects

did not seem to present major problems for any of the inter-

polation methods employed in this study, although this topic

warrants further study, especially as it relates to the relative

location of recording samples, the perimeter to area ratio of

the study area, and the length of the analysis period and

number of fire years.

Spatially explicit fire frequency reconstruction holds great

promise for better understanding processes that build spatial

heterogeneity, especially in forests that have been greatly

homogenized from logging and fire suppression. The meth-

ods employed in this study can be applied to any fire scar col-

lection that includes geographical locations and could prove

valuable to inform resilience-based ecosystem management.
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