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Abstract

Restoration of fire-prone forests can promote resiliency to disturbances, yet such activities may
reduce biomass stocks to levels that conflict with climate mitigation goals. Using a set of large-scale
historical inventories across the Sierra Nevada/southern Cascade region, we identified underlying
climatic and biophysical drivers of historical forest characteristics and projected how restoration of
these characteristics manifest under future climate. Historical forest conditions varied with climate
and site moisture availability but were generally characterized by low tree density (~53 trees ha™!),
low live basal area (~22 m? ha™!), low biomass (~34 Mg ha—!), and high pine dominance. Our
predictions reflected broad convergence in forest structure, frequent fire is the most likely
explanation for this convergence. Under projected climate (2040-2069), hotter sites become more
prevalent, nearly ubiquitously favoring low tree densities, low biomass, and high pine dominance.

Based on these projections, this region may be unable to support aboveground biomass
>40 Mg ha™! by 2069, a value approximately 25% of current average biomass stocks. Ultimately,
restoring resilient forests will require adjusting carbon policy to match limited future aboveground

carbon stocks in this region.

1. Introduction

Fire-prone forests (those with historical fire inter-
vals <35 years) have undergone drastic changes that
render them more vulnerable to large-scale disturb-
ances (Stephens et al 2013, 2018a, Singleton et al
2019, Hagmann et al 2021). Indeed, past manage-
ment practices and over a century of aggressive fire
suppression have resulted in increased tree density,
shifts in species composition, and elevated fuels loads
(Stephens et al 2009, Lydersen et al 2013, Knapp et al
2017, North et al 2021). The consequences of these
changes on forest ecosystems are evident in Califor-
nia, where recent years of drought, insect outbreaks,
and wildfires led to substantial levels of tree mortality
(Stephens et al 2018a, Fettig et al 2019). With extreme
drought and severe wildfire expected to increase in
frequency and severity under projected future climate

© 2022 The Author(s). Published by IOP Publishing Ltd

(Allen et al 2015, Kolb et al 2016, Williams et al 2019),
there is greater likelihood of forest loss and the eco-
system services that they provide (Liang et al 2017b,
Jones et al 2020).

In 2017, California re-authorized its landmark
greenhouse gas reduction efforts and extended its goal
of reducing greenhouse gas emissions to 40% below
1990 levels by 2030 (AB-398). To achieve this goal,
the state has outlined restoration and conservation
strategies designed to ensure that forests remain net
sinks of carbon. The Sierra Nevada/southern Cas-
cade region contains almost half of the forest car-
bon stocks in California, accounting for 46% of the
total above ground live tree carbon across the state
(Forest Climate Action Team 2018). However, the
annual rate of carbon sequestration is declining. From
2018 to 2019, the region lost 1.1 MMT of carbon
dioxide equivalent (CO2e)—a 35% decrease that is
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largely attributed to disturbance-related tree mor-
tality (Christensen et al 2019). If these trends con-
tinue under climate change, the ability of the Sierra
Nevada/southern Cascade region to remain a reliable
carbon sink may be compromised (Liang et al 2017a).

The capacity of fire-prone forests to withstand or
recover from disturbances can be improved with res-
toration treatments (Stephens et al 2020b, Hagmann
et al 2021). Restoration is an attractive approach to
forest management because it is based on structural
and compositional characteristics that are reflective
of the selective pressures driving evolutionary history
(Franklin et al 2007). Improving the resiliency of Cali-
fornia’s forests is a shared and pressing goal for fed-
eral and state managers (California and United States
Department of Agriculture, Forest Service 2020).
Thus, implementing restoration on the landscape is
a priority (Hessburg et al 2021). However, this charge
raises a critical question—restoration to what?

Quantifying the patterns and processes of past
ecosystems vitally informs the stewardship of con-
temporary ecosystems (Beller et al 2020). As such,
land managers increasingly value well-documented
reference conditions (Higgs et al 2014). These con-
ditions are shaped by the complex interactions
among climate, topography, and fire that result in
variable conditions across multiple scales (Collins
et al 2016, Jeronimo et al 2019). A concern with
relying on reference conditions to inform restora-
tion is that novel conditions under climate change
may create uncharacteristic feedbacks between cli-
mate, vegetation, and disturbances that substantially
diverge from the processes that drove forest dynam-
ics in the past(Coop etal 2020). Under these cir-
cumstances, the value of using reference conditions
as a relevant baseline for promoting resiliency must
be evaluated against expectations of the types of
forests that can be sustained under future conditions
(Fulé 2008).

Using a set of large-scale historical (1911-1936)
inventories conducted in California, we identified
the underlying climatic and biophysical drivers of
historical forest characteristics, and then project
how these characteristics will be distributed across
the region under future climate. These inventories
provide detailed observations of a forest condition
that was shaped by frequent fire, interacting with
topography and local moisture availability (Hagmann
etal 2018). As such, the reconstructed forest structure
and composition captures reference conditions that
can inform large-scale forest restoration. Given the
similarities across a broad range of studies that quan-
tified historical structure in fire-prone forests (Hag-
mann et al 2013, 2014, Collins et al 2015, Stephens
et al 2015, Stephens et al 2018b, Collins et al 2021),
we expect low aboveground live tree biomass (AGLB),
low tree density, low basal area and pine domin-
ance to be relatively common across a broad range of
historical environmental conditions within the Sierra
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Nevada/southern Cascade region. However, some of
these environments are unlikely to persist with cli-
mate change. Future resilient forests may therefore be
different than what they were historically. Our overall
goal is to provide information on the long-term sus-
tainability of forest carbon stocks, which can be used
to design spatially explicit restoration treatments for
these altered forests into the future. This information
may be particularly useful to policymakers and land
managers for the development of realistic goals that
reconcile the ecology of these systems under projec-
ted near-term climate with carbon mitigation goals.

2. Methods

2.1. Study area

The historical forest inventory data used cov-
ers a range of latitudes (36°-40°) and elevations
(1046 m—2442 m), from the southernmost location
in the southern Sierra Nevada to the northernmost
location in the southern Cascade Range (supplement-
ary figure 1 available online at stacks.iop.org/ERL/17/
044047/mmedia). Prior to 1900, low- to moderate-
severity fire was common across these areas ignited
by lightning and Indigenous people, with median fire
return intervals ranging from 5 to 20 years (Kilgore
and Taylor 1979, Caprio and Swetnam 1993, Stephens
and Collins 2004, Stephens et al 2007, Scholl and
Taylor 2010, Taylor et al 2016, Skinner and Taylor
2018). There is no evidence that our study areas
were impacted by management prior to the historical
inventories, with the exception of a very small pro-
portion of observations (<1%) (Collins et al 2015,
Stephens et al 2015, 2018b) which we excluded from
further analyses.

2.2. Historical inventory data

Our historical dataset consists of four separate invent-
ories that were completed between 1911 to 1936
(supplementary table 1). Three inventories were
conducted in federally-owned forests including the
Sequoia National Forest (formerly Kern National
Forest), the Stanislaus National Forest (including
some areas of Yosemite National Park), and the El
Dorado National Forest. One inventory located near
the Plumas and Lassen National Forests was privately-
owned and we refer to this inventory as the Lassen-
Plumas site. All forest inventories were located sys-
tematically based on the public land survey system.
Each inventory adopted a belt transect approach, with
transects ranging from 20.1 m to 40.2 m wide and
402 m long, spanning the length of one 16.2 ha (40 ac)
quarter-quarter (QQ) section. The number of tran-
sects in each QQ section varied by site, resulting in
sampling intensities ranging from 3% to 40% by area.
Multiple transects within a single QQ section were
pooled so that our observed sampling unit was at
the QQ section scale (16.2 ha). This resulted in a
total of 2791 samples distributed across the Sequoia
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National Forest (n = 379), Stanislaus National Forest
(n = 265), El Dorado National Forest (n = 611), and
the Lassen-Plumas (n = 1534).

From these samples, we calculated tree density
(trees ha™!) and total live basal area (m? ha~!) by
species. Total basal area is the cross-sectional area of
inventoried live trees measured at diameter at breast
height (DBH). Using live basal area, we estimated
species-specific AGLB (Mg ha™!) using established
methods (Zhou and Hemstrom 2009, Knight et al
2020) (supplementary methods) and calculated pine
fraction as the ratio of pine basal area relative to the
total amount of basal area for a given QQ section.
While trees <30.5 cm DBH were included in some
inventories, these recordings were inconsistent within
individual surveys and not tallied across all sites.
To maintain consistency between datasets, we estab-
lished a minimum DBH cut-off of 30.5 cm in our
calculations of tree density and live basal area. While
this does underrepresent the contribution of smaller-
sized trees, datasets that included these smaller size
classes showed that they composed a relatively small
fraction of the overall inventory (1%-3% of total live
basal area) (Stephens et al 2015).

2.3. Historical and future environmental
conditions

To evaluate how biophysical characteristics are related
to historical forest structure, we extracted underlying
climate and topographic data for our historical data-
set. Climate data were acquired from raster datasets
derived from the Basin Characterization Model (Flint
et al 2013, 2014), which provides 30 year climate
averages (1920-1951) that overlap with the timing
of our historical forest inventories. Climate vari-
ables included mean values for maximum summer
(June—August) temperature (°C), winter (December—
February) precipitation (mm), annual climatic
water deficit (mm), and 1 April snowpack (mm).
Topographic data were acquired from LANDFIRE
and included elevation (m), slope (degrees), and
aspect (degrees). We converted aspect to a cat-
egorical variable with breakpoints at 0°/360°, 90°,
180°, and 270° to correspond to northeast-facing,
southeast-facing, southwest-facing, and northwest-
facing slopes, respectively. Since the lowest resolution
of spatial data used was 270 m, we resampled datasets
accordingly to 270 m.

To assess how environmental conditions shift
with climate change, we used the Basin Character-
ization Model’s 30 year averages during 2040-2069
for the same climate variables extracted for historical
reconstructions. While this dataset provides down-
scaled projections from several global climate mod-
els, we used a subset of four models which are
considered in California’s Fourth Climate Change
Assessment as sufficiently simulating the state’s future
climate (Pierce et al 2018) and have been used
to project future carbon dynamics in the Sierra
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Nevada (Liang et al 2017a, 2017b). These mod-
els include the Geophysical Fluid Dynamics Lab
coupled model (GFDL-CM3), the National Cen-
ter for Atmospheric Research Community Climate
System Model (CCSM4), the Centre National de
Recherches Meteorologiques Coupled Global Climate
Model (CNRM-CMS5), and the Model for Interdis-
ciplinary Research on Climates (MIROC5). We aver-
aged each climate variable across all models to cre-
ate a multi-model ensemble which is the preferred
approach when predicting future climates (Pierce et al
2009). In terms of emission scenarios, we chose to
use RCP 8.5. Although this may be considered a more
‘aggressive’ representative concentration pathway, it
matches well with carbon emissions resulting from
current policies and shows highly plausible emission
levels by 2100 (Schwalm et al 2020).

2.4. Data analysis

An initial set of all seven climate variables, eleva-
tion, slope, and aspect was considered to explain the
variation in historical tree density, basal area, pine
fraction, and total AGLB. Multicollinearity amongst
explanatory variables was reduced by removing vari-
ables with a Pearson’s correlation coefficient greater
than 0.7 (supplementary figure 2). This threshold res-
ulted in a final candidate set of six variables includ-
ing slope, aspect, maximum summer temperature,
annual climatic water deficit, winter precipitation,
and 1 April snowpack.

We then input our reduced number of pre-
dictor variables into a random forest model using
the randomPForest package in R (Liaw and Wiener
2002, R Core Team 2020) to determine which vari-
ables were the most important in explaining historical
forest structures. Random forest is a machine learning
algorithm that aggregates bootstrapped estimates of
multiple decision trees, which leads to greater accur-
acy and lower error rates relative to traditional linear
regression models (Povak et al 2014). We created ran-
dom forest models for tree density, basal area, pine
fraction, and total AGLB starting with all six pre-
dictor variables. Based on the percentage increase in
mean standard error, we removed the least import-
ant variable from each model and re-ran random
forest. We repeated this stepwise process until only
two variables remained in each model which gener-
ated five potential models for each response variable.
We selected the ‘best’” performing model based on the
greatest percentage of variation explained and lowest
root mean standard error (Povak et al 2014, Collins
et al 2021) for the five models for each response
variable (supplementary figure 3). The variables con-
tained within these models were used as inputs in a
regression tree analysis using the rpart package in R
(Therneau and Atkinson 2019) to identify thresholds
in the environmental conditions associated with his-
torical forest conditions. We used an ANOVA method
for splitting variables and a complexity parameter of



10P Publishing

Environ. Res. Lett. 17 (2022) 044047

0.035 (the increase in R? value at each split that must
occur for the split to be accepted). To avoid an overly
complex regression tree, we increased the complexity
parameter to 0.05 when predicting AGLB.

To evaluate how underlying environmental
conditions associated with historical forest struc-
tures shift with climate change, we used the same
thresholds identified by regression tree analyses and
applied them to future climate variables. We then
calculated the number of sites that could exist within
that environmental space. We estimated historical
and future tree density, basal area, pine fraction, and
total AGLB at a landscape scale by applying the best
random forest model to a 270 m resolution raster
dataset containing each model’s associated climatic
and topographic variables. To determine how shifts
in underlying environmental conditions manifest as
changes in forest structure at the landscape scale,
we subtracted the historical predictions of tree dens-
ity, basal area, pine fraction, and total AGLB from
the predictions generated using future climate con-
ditions. To avoid extrapolating beyond the natural
range of variation in the sampled environmental
space, the region where we extrapolated our pre-
dictions was filtered for ecological system codes des-
ignated by LANDFIRE that matched our QQ dataset.
Ecological systems are a classification scheme that
describe the natural range of variation in plant com-
munities based on regional distribution, vegetation
physiognomy and composition, environment, and
disturbance (Comer et al 2003). Similar to previous
studies, we also excluded any topographic or climatic
values that were not within the environmental space
of the historical dataset (Stephens ef al 2018b). This
resulted in our predictions of landscape-scale forest
structures being constrained only to areas that are
representative of the site characteristics and disturb-
ance history where our QQ sections were located
(supplementary figure 4).

3. Results

Historical forest inventories revealed that median tree
density across our study sites ranged from 34 to
75 trees ha™!, live basal area varied between 14.5
and 39.5 m? ha~!, while median AGLB spanned
19.9-59.1 Mg ha™! (supplementary table 2). In half
of our inventoried sites (Stanislaus and Lassen-
Plumas), pine was the dominant component of
the landscape (pine fraction ~0.60-0.63), while the
other locations (Sequoia and El Dorado) showed
that forest overstory was mainly mixed-conifer with
shared dominance among several species (pine frac-
tion ~0.33—0.43). For all forest structure metrics, our
top random forest models included a combination
of climatic and topographic variables, specifically:
maximum summer temperature, winter precipita-
tion, annual climatic water deficit, 1 April snowpack,
slope, and aspect. Since predictions of historical and
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future live basal area closely resembled results for
AGLB (r* = 0.97 for both historical and future), we
report results for AGLB only and provide results for
live basal area in the supplementary materials to avoid
redundancy (supplementary figures 6 and 7).

Regression tree analysis showed that maximum
summer temperature and winter precipitation were
the main drivers of historical tree density (figure 1).
Maximum summer temperature had the strongest
influence on historical tree density, with 92% of
sites exhibiting hotter conditions (maximum summer
temperature >>24 °C). Depending on winter precipit-
ation, sites that were hotter and drier (winter precipit-
ation < 229 mm) were associated with ~47 treesha™!,
while wetter sites (winter precipitation >229 mm)
were associated with ~69 trees ha~!. While cooler
sites (maximum summer temperature <24 °C) were
associated with higher tree densities, they were still
limited to ~78 trees ha~!. Break points established by
regression tree analysis suggested that 99% of future
landscapes are characterized by hotter conditions that
were historically associated with lower tree densit-
ies (figure 1). In fact, the percentage of sites histor-
ically characterized by lower summer temperatures
(maximum summer temperature < 24 °C) substan-
tially decreased from 5% to <1% under future climate
conditions.

Applying our top random forest model to
interpolate historical tree density across the Sierra
Nevada/southern Cascade study region revealed
noticeable gradients (figure 2(a)). Tree density was
the lowest in the western portion of the region at
lower elevations, where summer temperatures were
higher. Density generally increased eastward towards
higher elevations as temperature decreased. How-
ever, a majority (85%) of the historical landscape
was composed of forests with <75 trees ha~!. Hot-
ter conditions became more prevalent across future
landscapes, resulting in 99% of the entire region hav-
ing projected tree densities <75 trees ha~! by 2069
(figure 2(b)). While 5% of the future landscape still
aligned with historical tree densities (1 tree ha™!),
our results showed that 78% of the region was pre-
dicted to support lower tree densities than what was
present historically (figure 2(c)). Historically cool
environments were the most vulnerable to change,
where shifts in climatic conditions aligned with
forests that contained as much as 168 trees ha™! less
than historical conditions.

A combination of climate and topography influ-
enced historical species composition (figure 3), with
80% of sites exhibiting trends towards pine dom-
inance (pine fraction > 0.50). Maximum sum-
mer temperature had the strongest influence on
species composition, with very cold environments
(<25th percentile) limiting pine fraction to 0.28 when
maximum summer temperature fell below 24 °C.
Warmer sites (>24 °C) had higher pine dominance,
especially when terrain was relatively flat (slope <11°)
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Figure 1. Regression tree output explaining the influence of biophysical variables on tree density (trees ha=!). Colored boxes at
the ends of the regression tree branches contain mean trees ha=! (TPH) and number of quarter-quarter (QQ) sections (1) in each
resulting group, for the historical (H) inventory and how the inventories would be distributed given future (2040-2069; F) climate
conditions. The colors in the histogram correspond with different historical TPH values observed.
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TPH predictions
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Figure 2. Comparison of landscape historical (1911-1936) and future (2040-2069) tree density (trees ha™!) using model
predictions of historical (a) and future (b) landscape tree density (trees ha=!: TPH). Predictions were generated from the random
forest model using the historical timber inventories and applied across the environmental space (supplementary figure 4)
represented by those inventories. Predictors included means of maximum summer temperature, winter precipitation, 1 April
snowpack, aspect, and slope. Future climate variables were averaged using a multi-model ensemble. ATPH (c) represents the
difference between what was predicted in future TPH and what was predicted historically (TPH putare — TPH Historical)-

and dry (winter precipitation <229 mm: pine frac-
tion ~0.66). Shifts towards hotter conditions in the
future suggest an increased prevalence of environ-
ments that historically facilitated pine dominance

(figure 3). Cooler sites (maximum summer temper-
ature <24 °C) where pine dominance was limited to
only ~0.28 almost became non-existent (<1%) under
future climate conditions.
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Figure 3. Regression tree output explaining the influence of biophysical variables on pine fraction. Colored boxes at the ends of
the regression tree branches contain mean pine fraction and number of quarter-quarter (QQ) sections (n) in each resulting
group, for the historical (H) inventory and how the inventories would be distributed given future (2040-2069; F) climate
conditions. The colors in the histogram correspond with different historical pine fraction values observed.

The patterns observed in pine fraction opposed
the trends observed in tree density, with higher pine
fraction estimated at lower elevations where tem-
peratures were higher and decreasing to the east as
temperatures lowered (figure 4(a)). In fact, a linear
regression detected a negative relationship between
tree density and pine fraction (p < 0.01; r*> = 0.35).
However, 50% of the historical landscape was still
composed of pine-dominated forests (pine frac-
tion > 0.50). Hotter conditions increase under climate
change resulting in a 30% increase in forests associ-
ated with pine dominance, totaling 71% of the entire
region by 2069 (figure 4(b)). Although we found that
8% of forested areas still aligned with historical pine
fraction (£1%), our findings also indicated that 62%
of the future landscape will favor greater pine fraction
than what was present historically (figure 4(c)).

Maximum summer temperature and winter pre-
cipitation were the only drivers of historical AGLB
(figure 5). Maximum summer temperature had the
strongest influence on AGLB, with the hottest (max-
imum summer temperature >24 °C) and driest
(winter precipitation <182 mm) environments exhib-
iting the lowest levels of AGLB (~26 Mg ha™!),
constituting a majority (48%) of sites. Although we
observed higher levels of AGLB under higher levels
of precipitation (>182 mm) and cooler summer tem-
peratures (<24 °C), AGLB was still limited to ~39-
59 Mg ha~!. Sites with lower AGLB are favored in the
future due to climatic shifts towards warmer and drier
environments (figure 5). In fact, sites that were char-
acterized by cooler summer temperatures (<24 °C)
decreased from 9% to <1% under future climate
predictions.

Spatially comprehensive predictions of AGLB fol-
lowed the same trends as tree density, increasing
eastward towards higher elevations as temperature

6

decreased (figure 6(a)). However, a majority (68%) of
the historical landscape was composed of forests with
AGLB < 40 Mg ha™!. Not only were hotter and drier
conditions likely to persist under climate change, our
findings indicate that sites which can only support
<40 Mg ha—! compose 85% of the landscape by 2069
(figure 6(b)). Although 6% of the future landscape
still aligned with historical AGLB (41 Mg ha™!), we
found that 76% of the region was predicted to sup-
port lower AGLB than what was present in the past
(figure 6(c)). Historically cool and moist environ-
ments are the most vulnerable to change, with shifts
in climatic conditions aligned with forests that con-
tained as much as 131 Mg ha~! less AGLB than his-
torical conditions.

4, Discussion

Historical Sierra Nevada/southern Cascade mixed
conifer forests were dominated by low tree densit-
ies (~53 trees ha™!), low basal area (~22 m? ha™!),
low AGLB (~34 Mg ha™!), and high pine dominance
over a large geographic extent (36°—40° latitude).
Although there was some variability in structure,
which was associated with local climate, moisture,
and underlying topography, it was surprising that
variability in historical forest conditions was not
more pronounced. Our spatially comprehensive pre-
dictions reflected these limited ranges indicating
broad convergence in forest structure across this
large region. This convergence is remarkable given
the strong gradients in the biophysical environment
throughout the lower montane zone of the Sierra
Nevada and southern Cascade Range (North et al
2016). Frequent lightning fire and Indigenous burn-
ing throughout this region (Taylor et al 2016, Safford
and Stevens 2017) is the most likely explanation for
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Figure 4. Comparison of landscape historical (1911-1936) and future (2040-2069) pine fraction using model predictions of
historical (a) and future (b) landscape pine fraction. Predictions were generated from the random forest model using the
historical timber inventories and applied across the environmental space (supplementary figure 4) represented by those
inventories. Predictors included means of maximum summer temperature, winter precipitation, 1 April snowpack, aspect, and
slope. Future climate variables were averaged using a multi-model ensemble. APine fraction (c) represents the difference between
what was predicted in the future and what was predicted historically (Pine fraction putre — Pine fraction pistorical)-
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Figure 5. Regression tree output explaining the influence of biophysical variables on aboveground live tree biomass

(AGLB; Mg ha™!). Colored boxes at the ends of the regression tree branches contain mean aboveground live tree biomass (B) and
number of quarter-quarter (QQ) sections (n) in each resulting group, for the historical (H) inventory and how the inventories
would be distributed given future (2040-2069; F) climate conditions. The colors in the histogram correspond with different
historical AGLB values observed.

this convergence in forest structure and composition.  predictions (270 m), by partially masking local con-
Our results suggest that fire may have homogen- trols on biomass accumulation. In other words, dif-
ized forests, at least at the spatial resolution of our ferences in site productivity may not have been
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Figure 6. Comparison of landscape historical (1911-1936) and future (2040-2069) aboveground live tree biomass (Mg ha™1!)
using model predictions of historical (a) and future (b) landscape aboveground live tree biomass (AGLB). Predictions were
generated from the random forest model using the historical inventories and applied across the environmental space
(supplementary figure 4) represented by those inventories. Predictors included means of maximum summer temperature, winter
precipitation, 1 April snowpack, aspect, and slope. Future climate variables were averaged using a multi-model ensemble. AAGLB
(c) represents the difference between what was predicted in future AGLB and what was predicted historically

allowed to be fully expressed because frequent fire
selected for a low density, generally pine-dominated
forest condition with low fire hazards.

Despite the broad scale pattern of convergence
in forest structure and composition, our findings
indicated local (270 m) maximum summer temper-
ature and winter precipitation were most strongly
associated with variability in forest structure and
composition (figures 1, 3 and 5). Slope gradient was
also associated with variability, but to a lesser extent.
Historically cooler and moister sites were associated
with greater tree density, AGLB, and fir species dom-
inance, which is consistent with findings from con-
temporary reference areas (Lydersen and North 2012,
Lydersen and Collins 2018). However, based on our
projections using near-term future climate, envir-
onmental conditions associated with these charac-
teristics largely disappear from the region by 2069
(figures 2, 4, 6 and supplementary figure 7). A vast
majority of the study region aligned with more xeric
future conditions, demonstrating that forests likely to
persist under climate change should be composed of
lower tree density, basal area, AGLB, and more pines.
We submit that since our projections are based on

forest conditions that persisted for several hundred
years throughout the region (Safford and Stevens
2017) and they integrate future climate, the projec-
tions offer a reasonable approximation of future resi-
lient forests.

Given the challenges that forests face over the next
century, we must be realistic about how we can meet
societal needs while ensuring that forested ecosys-
tems can be sustained. In anticipation of novel eco-
systems under climate change, some argue for more
proactive approaches that focus less on returning to
past conditions and focus more on creating desir-
able states for the future (Seastedt et al 2008). This
strategy stems from the idea that climate change may
produce interactions between vegetation and disturb-
ances that have no historical analog (Wurtzebach and
Schultz 2016). If this is the case, strict adherence
to historical forest conditions to guide restoration
treatments may not be entirely effective for adapting
forests to future conditions. Long-term forest con-
servation may require integrating the lower range of
historical variation in tree density, basal area, and
AGLB to adapt to novel ecological conditions. While
this approach may converge with forest conservation
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and fire hazard reduction goals (Stephens et al
2020a), it will require adjusting expectations regard-
ing the contribution of forests toward greenhouse gas
reduction goals. We found that the Sierra Nevada/
southern Cascade region may be unable to support
AGLB >40 Mg ha~! by 2069, a value approximately
25% of current AGLB stocks (supplementary table 3).
While AGLB is only part of the total carbon stored
by forest ecosystems, it is the dominant vegetation
pool (California Air Resources Board 2018) and a
robust indicator of total stored carbon (supplement-
ary figure 8).

In California, initial expectations regarding the
carbon sequestration potential of forests were based
on conditions in 1990 (AB 32). Yet the climate has
warmed about 0.5 °C per decade between 1990 and
2020 in the study region (Goss et al 2020). Current
expectations regarding greenhouse gas reductions in
the natural and working lands (NWL) sector are for
15-20 MMT CO,e by 2030 (California Air Resources
Board 2017). Forest currently account for more the
95% of the carbon stored in NWL (CARB 2018).
Yet the impacts of a warming climate and increased
burn area and severity may lead to an overall reduc-
tion in carbon storage from type conversion (Coop
et al 2020). Based on the relationship between AGLB
and total biomass (supplementary figure 8), these
forests store a total of 1,167 MMT CO,e. We pro-
ject that the median AGLB in 2069 will be no more
than 40 Mg ha—!, which translates to 307 MMT CO,e
stored in the total biomass pool. These extrapola-
tions suggest that this region could emit 860 MMT
CO,e over the next 50 years (2019-2069). Liang et al
(2017a) projected the Sierra Nevada’s carbon carrying
capacity under climate-wildfire interactions through
the late 21st century and found that the region could
lose as much as 78% of current aboveground carbon
stocks, which aligns with our projections of climate-
resilient forests supporting <25% of current AGLB.
Clearly the transition of the forest to future climate
will have major implications for California’s effort to
reduce greenhouse gas emissions and this should be
accounted for when exploring the trade-offs between
carbon storage and restoration treatments.

Although our results are limited to projections
from four climate models (GFDL, CNRM, CCSM,
and MIROC), each driven by the RCP 8.5 scen-
ario, these models showed fidelity over the histor-
ical period when evaluated for California’s Fourth
Climate Change Assessment and bracketed a range
of possible future climate conditions (Bedsworth
et al 2018). However, the interpretation of our res-
ults should be tempered by understanding a couple
key assumptions underlying our analytical approach.
Applying an established relationship between histor-
ical climate/moisture availability and forest struc-
ture/composition to project future forest conditions
assumes that we not only captured the appropri-
ate controls on forest conditions, but these controls
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will exert a similar influence into the future as well.
The known influence of extreme events on forest
conditions (Millar and Stephenson 2015) challenges
both assumptions. Specifically, our historical cli-
mate/moisture data may not include the extreme
events that influenced extant forest structure and
composition at the time of the inventories. As a
result, our future projections may be missing these
important influences. Additionally, there may be
some novel climatic and moisture availability controls
that will be expressed in the future that fundamentally
shift the composition and structure of these forests.
For example, uncertainties associated with precipit-
ation in climate models that best represent Califor-
nia means that precipitation could increase with cli-
mate change. If temperature also goes up, then snow-
lines could increase in elevation (Hatchett et al 2017),
which can increase how much AGLB a site can sup-
port. We found evidence of this in the increased levels
of tree density and AGLB in some regions when we
predicted landscape forest structure under future cli-
mates (figures 2 and 6). However, higher temperat-
ures and reduced snowpack described in California’s
Fourth climate Change Assessment are associated
with a greater frequency of large wildfires (Westerling
2018) that will ultimately accelerate carbon losses in
the region we analyzed (Liang et al 2017a, 2017b).
Even if forests could support higher AGLB than what
our results are suggesting, reducing current tree dens-
ity and promoting pine-dominated forests back to the
historical range of variation can help increase resi-
liency to large-scale disturbances like drought and
wildfires (North et al 2021). While we admit that our
findings do not provide hard rules for forest manage-
ment, and that a range of future forest conditions can
vary slightly across individual climate models (sup-
plementary figures 9-12), we believe that they still
provide useful guidelines for re-evaluating expecta-
tions for aboveground carbon storage in a majority
of the Sierra Nevada/southern Cascade region where
fires are likely to occur.

It is worth noting that forested ecosystems are
not fragile, and that historical vegetation character-
istics could still be resilient to climate change. The-
oretical frameworks that describe resiliency high-
light the importance of contextualizing ecosystem
integrity across a range of conditions (i.e. alternative
stable states) that could persist under climate change
(Hessburg et al 2019), including those that existed
historically. We found that 2%—4% of the region ana-
lyzed showed only a 1% difference between historical
forest conditions and what could exist under climate
change. This range increases to 14%-34% of the
region when increasing the threshold to a 10% dif-
ference between historical and future forest condi-
tions. Estimating the threshold of change that could
occur before resiliency is compromised is beyond
the scope of our analyses, but the stability of refer-
ence conditions found in other studies suggest that
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historical conditions are still an improvement over
fire-suppressed conditions for promoting resiliency.
Contemporary reference forests where fire remained
active or was re-introduced support this assertion.
These forests, which have similar structures to histor-
ical forests (Jeronimo et al 2019), demonstrated low
vulnerability to severe wildfire effects despite increas-
ing trends in burn severity across larger regions
(Collins et al 2009, Collins and Stephens 2010,
Rivera-Huerta et al 2016, Stephens et al 2021). In
addition, restoration treatments at the stand scale
mitigated tree mortality (Knapp et al 2021) despite
experiencing California’s most severe drought in the
last 1200 years (Griffin and Anchukaitis 2014). Not
only do these findings demonstrate how forests with
characteristics analogous to historical structures per-
sist under current conditions, but also reveal that
restoring historical conditions can serve as one of
the pathways available for adapting forests to climate
change.

Ultimately, the decision to apply restoration treat-
ments should be guided by management objectives
and whether meeting those objectives is possible
under climate change. Our comprehensive assess-
ment of how biophysical thresholds can manifest
landscape forest changes provide guidance on pri-
oritizing and implementing forest restoration treat-
ments in areas where they are most likely to be
needed and effective. However, our study also high-
lights the inherent conflict between restoration goals
and greenhouse gas reduction targets and suggests a
re-examination of the role of frequent-fire forests in
California’s carbon policies.
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