# Organizing to Advance Solutions in the Sahel Agriculture and Extreme Heat

Wolfram Schlenker

University of California at Berkeley and NBER

September 21, 2012

- Modeling Yields in United States Extreme Heat
- Modeling Yields in Africa
- 3 Observed Climate Change Recent Evidence
- 4 Climate (El Nino) and Civil Conflict
- Going Forward

- Modeling Yields in United States Extreme Heat
- 2 Modeling Yields in Africa
- 3 Observed Climate Change Recent Evidence
- 4 Climate (El Nino) and Civil Conflict
- Going Forward

## Effect of Temperatures on Maize Yields

- Examining yearly fluctuations in yields
  US: fine-scale weather data (4km x 4km grid)
- Crucial importance of "extreme" heat
  - Best predictor: temperatures above 29°C (84°F)

#### Effect of Temperatures on Maize Yields

Lessons from the United States





# Effect of Temperatures on Maize Yields

- Examining yearly fluctuations in yields
  - US: fine-scale weather data (4km x 4km grid)
- Crucial importance of "extreme" heat
  - Best predictor: temperatures above 29°C (84°F)
- 0.7% decline for each 24hour exposure for each degree above 29°C
  - 10 days at 30°C: 7% decline
  - 1 day at 39°C: 7% decline
- Heat versus rainfall
  - Water balance (supply and demand for water)
  - Precipitation
    - Impacts water supply
  - Heat (Double whammy)
    - Impacts water supply (more evaporation)
    - Impacts water demand of crops



## Effect of Climate Change on Extreme Heat



Source: Burke (2012)

#### Adaptation to Extreme Heat

Lessons from the United States

Does difference in climate (average weather) explain production differences?







# Technological Progress - What is Happening in 2012?

Putting 2012 into perspective (relative to 1950-2011)



# Technological Progress - What is Happening in 2012?

Predicted yield impacts (Model)





- 1 Modeling Yields in United States Extreme Heat
- Modeling Yields in Africa
- 3 Observed Climate Change Recent Evidence
- 4 Climate (El Nino) and Civil Conflict
- Going Forward

## Warming and Yields - Field Trials





## Warming and Yields - Field Trials





Source: Schlenker and Lobell ERL (2010)





Source: Schlenker and Lobell ERL (2010)











Source: Schlenker and Lobell ERL (2010)

- Modeling Yields in United States Extreme Heat
- Modeling Yields in Africa
- 3 Observed Climate Change Recent Evidence
- 4 Climate (El Nino) and Civil Conflict
- Going Forward

## Global Perspective

Temperature trends (1980-2008)

Measured in standard deviations of annual growing-season fluctuations



Source: Lobell, Schlenker, and Costa-Roberts Science (2011)



# Global Perspective - Trends in Countries

#### Temperature trend (1960–1980, # of SD)





# Global Perspective - Trends in Countries

#### Temperature trend (1980–2008, # of SD)



#### Global Perspective - Trends in Countries





# Impact on Global Production

| Crop    | Global<br>production,<br>1998–2002<br>average<br>(millions of<br>metric tons) | Global yield<br>impact of<br>temperature<br>trends (%) | Global yield<br>impact of<br>precipitation<br>trends (%) | Subtotal     | Global yield<br>impact of<br>CO <sub>2</sub><br>trends (%) | Total |
|---------|-------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------|------------------------------------------------------------|-------|
| Maize   | 607                                                                           | -3.1                                                   | -0.7                                                     | -3.8         | 0.0                                                        | -3.8  |
|         |                                                                               | (-4.9, -1.4)                                           | (-1.2, 0.2)                                              | (-5.8, -1.9) |                                                            |       |
| Rice    | 591                                                                           | 0.1                                                    | -0.2                                                     | -0.1         | 3.0                                                        | 2.9   |
|         |                                                                               | (-0.9, 1.2)                                            | (-1.0, 0.5)                                              | (-1.6, 1.4)  |                                                            |       |
| Wheat   | 586                                                                           | -4.9                                                   | -0.6                                                     | -5.5         | 3.0                                                        | -2.5  |
|         |                                                                               | (-7.2, -2.8)                                           | (-1.3, 0.1)                                              | (-8.0, -3.3) |                                                            |       |
| Soybean | 168                                                                           | -0.8                                                   | -0.9                                                     | -1.7         | 3.0                                                        | 1.3   |
|         |                                                                               | (-3.8,1.9)                                             | (-1.5, -0.2)                                             | (-4.9, 1.2)  |                                                            |       |

Source: Lobell, Schlenker, and Costa-Roberts Science (2011)

- 1 Modeling Yields in United States Extreme Heat
- 2 Modeling Yields in Africa
- 3 Observed Climate Change Recent Evidence
- 4 Climate (El Nino) and Civil Conflict
- Going Forward

#### Countries Influenced by El Nino



Source: Hsiang, Meng, and Cane Nature (2011)

#### Effect of El Nino on Civil Conflict

El Nino had a role in 21% of conflicts (1950-2004)



- Modeling Yields in United States Extreme Heat
- 2 Modeling Yields in Africa
- 3 Observed Climate Change Recent Evidence
- 4 Climate (El Nino) and Civil Conflict
- Going Forward

# Looking Forward

- Heat predicted to increase with climate change
- Regional projects
  - For example: increase forests (Abiodun this morning)
- Global projects
  - Restore funding to crop research
    - Large positive spill-overs
    - Private firms don't have right incentive to innovate
  - Trade can mitigate effects
    - Commitment against export bans
    - Shift in growing areas