From Technology to Impact Understanding and Measuring Behavior Change in Improved Biomass Stoves

October 2011

Jason Burwen

Energy and Resources Group Goldman School of Public Policy

jburwen@berkeley.edu

David Levine

Haas School of Business Center for the Evaluation of Global Action

levine@haas.berkeley.edu

"Clean cookstoves...can save lives, empower women, improve livelihoods, and combat climate change."

-Global Alliance for Clean Cookstoves

A theory of change: health

See White, 2009; Weiss, 1995.

outcomes

A theory of change: environment

See White, 2009; Weiss, 1995.

WHERE **ARE THE**

Components of stove uptake

See Shih & Venkatesh, 2004; Rogers, 1962.

Theory of (behavior) change

Complex interactions: cooks and stoves

Complex interactions: cooks and context

A complex theory of change

HOW DO YOU KNOW

Randomized-control trials

Randomized-control trials

My fieldwork in Ghana

- Randomized-control trial of improved stove
 - 768 participants across
 8 villages
 - Woman-to-woman trainings
 - Controlled cooking tests
 - Stove usage monitors
 - Follow-up field
 observations at 8 months

Stove performance results 1

 No detectable difference in exposures to carbon monoxide

- Prompted more indoor usage
 - Negative impacts possible for some individuals

Stove performance results 2

14% less fuel use on average

Effect varies with consumption level

Dashed lines indicate 95% confidence interval.

Fuel use = $\beta_0 + \beta_1$ treatment group status + β_2 outside location + β_3 cooked food weight + β_4 education day attendance + β_5 education day attendance x treatment + ∂ village + e

Interpreting stove usage monitor data

20

• Obvious...

Interpreting stove usage monitor data

21

• Not so obvious...

Dynamics of multiple stove use

Three and a half days of activity represented

Dynamics of multiple stove use

Indicators of stove uptake

- ADOPTION 80% of new stoves
- USAGE new stoves on average used $\sim \frac{1}{2}$ of all days
- **SUBSTITUTION** mixed evidence
 - Fewer traditional stoves per household
 - But more time spent cooking on traditional stoves
- MAINTENANCE $\sim \frac{1}{2}$ of observed new stoves still in use after 8 months but 25% broken

• Selective trials

- Selective trials
- Large, heterogeneous samples

- Selective trials
- Large, heterogeneous samples
- Examine both impact and behavior
 - Remote sensing
 - Qualitative methods

- Selective trials
- Large, heterogeneous samples
- Examine both impact and behavior
 - Remote sensing
 - Qualitative methods
- Follow-up field observation

Thank you

- Faculty input
 - David Levine
 - Isha Ray
 - Dan Kammen
- Rural Energy Systems lab
 - Mary Louise Gifford
 - Omar Masera
- Kirk Smith's lab
 - Zoë Chafe
 - Seth Shonkoff
 - Ilse Ruiz-Mercado
- Classmates from ERG and GSPP

