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Population-level analyses often use average quantities to describe heterogeneous 

systems, particularly when variation does not arise from identifiable groups1,2.  A 

prominent example, central to our current understanding of epidemic spread, is 

the basic reproductive number, R0, defined as the mean number of secondary 

infections per infected individual in a susceptible population3,4.  Population 

estimates of R0 can obscure considerable individual variation in infectiousness, as 

highlighted during the global emergence of severe acute respiratory syndrome 

(SARS) by numerous ‘superspreading events’ (SSEs) in which individuals infected 

large numbers of secondary cases5-9.  Here we present an integrated theoretical, 

statistical, and modelling analysis of the influence of individual variation in 

infectiousness on disease emergence.  Using contact tracing data from 8 directly-

transmitted diseases, we show that the distribution of individual infectiousness 

around R0 is often highly skewed.  We demonstrate that this variation causes 

outbreaks to differ sharply from predictions of standard homogeneous models, 

exhibiting frequent extinctions or explosive growth.  We explore implications for 

disease control, distinguishing between individual-specific and population-wide 

control measures, and highlighting potential gains in efficacy from targeting highly 

infectious individuals.  Finally, we revisit the concept of SSEs, proposing a rigorous 

definition and a method to predict SSE frequency.   

For sexually-transmitted and vector-borne diseases, host contact rates have long 

been used as a proxy for individual infectiousness3,10-12, leading to the assertion of a 

general ‘20/80 rule’ whereby 20% of individuals are responsible for 80% of 

transmission11, and to the influential concept of high-risk ‘core groups’3,10,11.  Because 

casual contacts are difficult to quantify, epidemiology of other directly-transmitted 

infections, such as SARS or influenza, has lagged behind these developments and lacks 

methods to treat variation in infectiousness2—witness the homogeneous infectiousness 

assumed by many analyses of SARS data despite awareness of SSEs13. 
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The overall infectiousness of each host, i.e. the number of other hosts they infect 

during their infectious lifetime, arises from a complex blend of host, pathogen and 

environmental factors (see Supplementary Discussion).  Consequently the degree of 

infectiousness is distributed continuously in any population4,7,14-16 and, crucially, 

distinct risk groups often cannot be defined a priori2,16.  This impedes the conventional 

approach to adding heterogeneity to epidemic models by dividing populations into 

homogeneous sub-groups2-4,17, a methodology that is powerful but is restricted to 

identifiable sub-groups and leads to proliferation of difficult-to-estimate parameters2.  

Research on continuous individual variation in infectiousness for directly-transmitted 

infections has been largely restricted to within-household transmission18,19, or to 

variation in infectious period20,21 or social network22 only.  Innovative recent studies 

used contact tracing data to investigate specific questions in light of observed 

heterogeneity8,15, but a broad understanding of the role of individual variation in 

outbreak dynamics is lacking. 

To extend current theory to include continuous individual variation in 

infectiousness, we introduce the ‘individual reproductive number’, ν, which is a random 

variable representing the expected number of secondary cases caused by a particular 

individual during their infection.  Values for ν are drawn from a continuous probability 

distribution with population mean R0, where the distribution of ν  enfolds all variability 

in infectious histories of individuals including properties of the host, pathogen, and 

environmental circumstances.  In this framework, SSEs are not exceptional events9 but 

important realizations from the tail of a right-skewed distribution of ν7,14.  The number 

of secondary cases caused by each infectious individual is then a random variable, Z, 

described by an ‘offspring distribution’ Pr(Z=k) that incorporates influences of variation 

(via ν) and stochasticity.  Stochastic effects in transmission are modelled using a 

Poisson process4: that is, Z~Poisson(ν).  By considering three possible distributions of 

ν, we generate three candidate models for the offspring distribution: (1) in generation-
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based models neglecting individual variation all individuals are characterized by the 

population mean, yielding Z~Poisson(R0); (2) in models with homogeneous 

transmission and exponentially-distributed infectious periods (arising from constant 

recovery rates), ν is exponentially distributed, yielding Z~geometric(R0); (3) in a more 

general formulation, ν is assumed to follow a gamma distribution with mean R0 and 

dispersion parameter k, yielding Z~negative binomial(R0,k) 23.  (For clarity we express 

all distributions using the mean as the scale parameter; see Supplementary Methods.)  

The negative binomial model includes the conventional Poisson (k→∞) and geometric 

(k=1) models as special cases, and has variance R0(1+R0/k).  Thus smaller values of k 

indicate greater heterogeneity. 

Realized offspring distributions can be determined from detailed contact tracing 

of particular outbreaks, or from surveillance data covering multiple disease 

introductions.  The candidate models can be challenged with these data using model 

selection techniques24, lending insight into the distribution of ν underlying observed 

transmission patterns (see Supplementary Methods).  For SARS outbreaks in Singapore 

and Beijing, the negative binomial model is unequivocally favoured (Fig 1a, Table 1).  

Stochasticity alone (or combined with an exponentially-distributed infectious period) 

cannot account for the observed variation in Z.  For Singapore, the maximum-likelihood 

estimate of the dispersion parameter is 0.16, indicating an underlying distribution of ν 

that is highly overdispersed (Fig 1a, inset).  By this analysis, the great majority of SARS 

cases in Singapore were barely infectious (73% had 1<ν ) while a small proportion 

were highly infectious (6% had 8>ν ), consistent with field reports from SARS-

afflicted regions5,6 but contrasting sharply with published SARS models8,9,13,25,26.  

Analysis of outbreak data for eight directly-transmitted infections reveals the 

differing degree of individual variation between diseases and outbreak settings (Table 1 

and Supplementary Table 1; datasets are summarized in Supplementary Data, and 
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describe periods before outbreak control measures were imposed).  The Poisson 

offspring distribution is almost always strongly rejected, by both model selection and a 

variance test for extra-Poisson heterogeneity (see Supplementary Information).  For 

several datasets the geometric model has considerable support; this indicates significant 

individual variation in rates of transmission, because real infectious periods are less 

dispersed than the exponential distribution20,21.  The negative binomial model is selected 

unequivocally for numerous datasets, and moreover is preferable conceptually because 

it enables comparative study of diseases via the dispersion parameter k.  Like SARS, 

measles in highly-vaccinated populations exhibits high variation in two surveillance 

datasets, with narrow confidence intervals on k indicating that conventional models 

cannot explain observed patterns.  Monkeypox and smallpox exhibit intermediate 

variation, consistent across multiple datasets; pneumonic plague transmission appears 

slightly less variable.  The analysis suggests intriguing patterns for other directly-

transmitted infections, but limited datasets prevent definitive conclusions.  Note that for 

outbreaks in partially vaccinated populations, observed variation reflects heterogeneity 

in vaccination coverage among social environments of the index cases, among other 

host, pathogen and environmental factors (see Supplementary Discussion and Data). 

The practical importance of heterogeneous infectiousness is emphasized by 

plotting the expected proportion of all transmission due to a given proportion of 

infectious cases, where cases are ranked by infectiousness (Fig 1b).  For a homogeneous 

population, where all individuals have identical expectation ν=R0, this relation is linear.  

For real disease datasets the line is concave due to variation in ν, emphasizing the huge 

potential benefit of targeted control measures if highly-infectious individuals can be 

identified before transmitting.  We compare our findings for directly-transmitted 

infections to the 20/80 rule proposed for sexually-transmitted and vector-borne 

diseases11, by plotting the proportion of transmission expected from the most infectious 

20% of the population (t20) versus the dispersion parameter k (Fig 1c, Table 1).  No 
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consensus value of t20 emerges so a general 20/80 rule does not hold, but the core 

insight that transmission is distributed unevenly is certainly supported. 

Numerous reports of superspreading events (SSEs) for many diseases provide 

further evidence for variation in ν.  We reviewed 37 published accounts of SSEs for 11 

directly-transmitted infections (Fig 1d; see Supplementary Data).  Unrecognized or 

misdiagnosed illness is the most common cause of superspreading in these accounts, 

followed by alternate modes of spread (especially airborne), high contact rates, and 

coinfections aiding transmission; high pathogen load or shedding rates are implicated in 

several instances, but are rarely measured.  A consistent and general definition of SSEs 

is currently lacking—for SARS an SSE has been defined arbitrarily as Z≥86, Z≥105, 

Z>1026 or ‘many more than the average number’9, and different threshold numbers of 

cases should apply for measles (R0~16) or monkeypox (R0~0.3).  We propose the 

following general protocol for defining an SSE: (1) set the context for transmission by 

estimating the effective reproductive number, R, for the disease and population in 

question, including immunization levels; (2) construct a Poisson distribution with mean 

R, representing the expected range of Z due to stochasticity in the absence of individual 

variation; (3) define an SSE as any case who infects more than Z(n) others, where Z(n) is 

the nth percentile of the Poisson(R) distribution.  A 99th-percentile SSE is then any case 

causing more secondary cases than would occur in 99% of infectious histories in a 

homogeneous population (Fig 1d).  This approach complements a priori identification 

of potential superspreaders when that is feasible, such as for sexually-transmitted 

diseases where promiscuity drives risk.  Beyond its generality and incorporation of 

stochastic effects, our definition allows prediction of the frequency of SSEs once R0 and 

k have been estimated (Supplementary Fig 1)—an outstanding challenge in emerging 

disease epidemiology8,9. 
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To assess the impact of individual variation on dynamics of disease invasion, we 

analyse a branching process model with negative binomial offspring distribution (see 

Supplementary Methods).  This corresponds to an underlying gamma distribution of the 

individual reproductive number, ν, encompassing a diverse family of distributions 

(including conventional models) for different values of k (Fig 2a).  Of primary interest 

for emerging disease outbreaks is the probability of stochastic extinction, q, following 

introduction of a single infected individual (Fig 2b).  For R0<1 all invasions die out, as 

in standard models.  For R0>1, the degree of individual variation has a decisive 

influence on q: increased variation strongly favours extinction8.  For example, if R0=3, 

then the extinction probability is q=0.06 under the assumption of homogeneous ν (or 

q=0.33 if k=1 so that ν is exponentially distributed), but q=0.76 if k=0.16 as estimated 

from SARS data (Table 1).  This greater extinction risk arises chiefly from a higher 

Pr(Z=0) resulting from the overdispersed distribution of ν (Figs 1a, 2a, Supplementary 

Fig 2a).  This effect can thwart invasion by diseases that are very potent spreaders on 

average: for arbitrarily high R0, q→1 as k→0 (Supplementary Fig 2b).  In the event of 

disease extinction, the expected number of cases in the outbreak is scarcely affected by 

variation (Supplementary Fig 2c)—if the invasion dies out spontaneously, the potential 

variability of a low-k disease was probably not manifested (i.e. no SSEs) and it 

resembles a homogeneous population with lower R0.  Accordingly, when individual 

variation is large, extinction happens within the first few generations or not at all 

(Supplementary Fig 2d). 

For outbreaks avoiding stochastic extinction, the rate of epidemic growth is 

strongly affected by variation in individual reproductive number (Fig 2c, Supplementary 

Figs 2e,f).  Diseases with low k display infrequent but explosive epidemics following 

introduction of a single case.  This pattern recalls SARS in 2003, for which many 

settings experienced no epidemic despite unprotected exposure to SARS cases27,28, 

while a few cities suffered explosive outbreaks8,9,14,26.  From our results, with k̂ =0.16 
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for SARS, this is explained simply by the presence or absence of high-ν individuals in 

the early generations of each outbreak6.  In contrast, conventional models (with k=1 or 

k→∞) cannot simultaneously generate frequent failed invasions and rapid growth rates 

without contrived elaborations of model structure. 

Beyond improving our understanding of observed patterns of disease invasion, 

accounting for individual variation in infectiousness allows new insights into disease 

control interventions.  Control measures and public awareness could increase or 

decrease individual variation.  The entire population may alter social mixing and contact 

patterns, or governments may impose isolation, quarantine or infection control on 

particular individuals.  Facing resource limitations, authorities must seek to maximize 

curtailment of disease spread for a given degree of control effort.   

For an outbreak with offspring distribution Z~negative binomial(R0,k) before 

control, we consider the impact of control effort c, where c=0 reflects an uncontrolled 

outbreak and c=1 reflects complete blockage of transmission.  Several idealized cases 

can be explored theoretically (see Supplementary Methods).  Under population-wide 

control, the infectiousness of every individual in the population is reduced by a factor c 

(i.e. pop
cν =(1−c)ν for all individuals), yielding pop

cZ ~negative binomial((1−c)R0,k).  

Under random individual-specific control, a proportion c of infected individuals (chosen 

at random) are traced and isolated completely such that they cause zero infections (i.e. 
ind
cν =0 for a proportion c of infected individuals, and ind

cν =ν for the rest).  The resulting 

offspring distribution can be specified exactly or approximated well by ind
cZ ~negative 

binomial((1−c)R0, ind
ck ), where ind

ck  decreases monotonically as c increases 

(Supplementary Fig 3a).  Individual-specific control raises the degree of heterogeneity 

in the outbreak, as measured by the variance-to-mean ratio of Z, while population-wide 

control reduces it.  Both approaches yield effective reproductive number R=(1−c)R0, so 

the threshold control effort for guaranteed disease extinction is c≥1−1/R0 as in 
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conventional models.  For intermediate values of c, however, the individual-specific 

approach always yields better control (Figs 3a,b), consistent with our finding that for a 

given reproductive number above 1, higher variation in Z favours disease extinction 

(Fig 2b).  Branching process theory confirms that popind qq >  whenever c∈(0,1−1/R0). 

To assess the realism of these idealized control scenarios, we analysed contact 

tracing data from periods before and after introduction of control measures for four 

outbreaks of directly-transmitted infections.  In all cases, kkc
ˆˆ <  as predicted by the 

individual-specific model, though small sample sizes often led to overlapping 

confidence intervals (Supplementary Table 1).  Outbreak reports indicate that this 

increased skew in transmission arose from individuals missed by control efforts or 

misdiagnosed, who continued infecting others (and even causing SSEs) while controlled 

cases infected very few.  To further examine our control theories, for each dataset we 

estimated pop
ck  and ind

ck  as described in the Supplementary Methods.  Again the 

individual-specific model was always closer to the data, although twice ck̂  fell between 

the predictions of the two models, indicating a possible combination of control 

mechanisms (Fig 3c).  Real-world control measures thus seem to increase individual 

variation, favouring extinction but risking on-going SSEs; larger datasets are required to 

establish these patterns definitively.  

If highly-infectious individuals can be identified a priori (a significant challenge, 

see Supplementary Discussion) then the efficiency of control measures can be increased 

greatly (Figs 3d,e).  Focusing half of all control effort on the most infectious 20% of 

cases increases the impact of control on preventing a major outbreak by as much as 

three-fold compared to random individual-specific control.  When k=0.1 or 0.5, 

outbreak containment is assured for targeted control levels roughly half the threshold 

level of c=1−1/R0 for random control.  This gain increases as control is targeted more 

intensely on the most infectious cases, but it saturates as overall coverage c rises 
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(Supplementary Fig 3b).  The beneficial effect of targeting acts at lower coverage levels 

for diseases with greater individual variation (e.g. k=0.1), but substantial gains are 

realized for diseases throughout the range of k estimated in Table 1.  Again branching 

process theory generalizes these findings: for a given proportion c of individuals 

controlled, greater targeting of higher-ν individuals always leads to lower effective 

reproductive number R and higher extinction probability q (see Supplementary 

Methods). 

Datasets analysed here were collected from published literature, and may be 

subject to selection bias for unusual instances such as SSEs rather than typical disease 

behaviour.  We urge that detailed transmission tracing data be collected and made 

public whenever possible, even if unexceptional.  At a minimum, we propose a new 

measure for inclusion in outbreak reports: the proportion of cases not transmitting (p0), 

which with R0 is sufficient to estimate the degree of variation in ν (Supplementary Fig 

4).  We caution, though, that p0 can be incorrectly estimated due to unattributed cases in 

traced outbreaks and missed sporadic cases in surveillance datasets.  As more data 

become available, trends may emerge in the degree of variation present, e.g. for 

different modes of spread, zoonotic versus human diseases, or varying levels of 

virulence.  Richer datasets may also enable testing of the branching process assumption 

that case outcomes are independent and identically distributed, to see whether ν values 

are correlated within transmission lineages, or levels of variation change systematically 

over the early generations of an outbreak. 

Our results have broad implications for emerging disease epidemiology, and open 

challenges for further work.  Explosive epidemics demand rapid action by authorities, 

and can strain health infrastructures.  High extinction probabilities indicate that disease 

introductions or host species jumps may be more frequent than currently suspected.  

Cluster-size surveillance for pathogen adaptation29 or dwindling population immunity30 
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should be tuned to observed levels of variation.  Our findings highlight enormous 

potential benefits of control measures targeting high-ν individuals: these should be 

explored further theoretically, but their real-world application will demand better 

understanding of host, pathogen and environmental factors determining individual 

infectiousness (see Supplementary Discussion).  More broadly, this work must be 

integrated with established theory of sexually-transmitted diseases and social networks, 

where high-risk groups exert nonlinear influence on R0 because contact rates affect 

infectiousness and susceptibility equally3,4,10,11,22.  Future research on directly-

transmitted infections should investigate covariation between infectiousness and 

susceptibility17, here treated implicitly by working directly with offspring distributions.  

In summary, the central role of R0 in epidemic analysis is unassailable, but our results 

show that individual variation in infectiousness cannot be overlooked in studies of 

outbreaks or disease emergence.  Examination of other population processes dependent 

on small numbers of individuals may yield similar insights. 
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Fig 1. Evidence for variation in individual reproductive number ν. (a) 

Transmission data from SARS outbreak in Singapore, 20035.  Bars show 

observed frequency of Z, the number of individuals infected by each case; lines 

show maximum likelihood fits for Z~Poisson (squares), Z~geometric (triangles), 

and Z~negative binomial (circles). (Inset) Probability density function (solid) and 

cumulative distribution function (dashed) for gamma-distributed ν 

(corresponding to Z~negative binomial) estimated from Singapore SARS data.  

(b)  Expected proportion of all transmission due to the most infectious cases for 

five directly-transmitted infections, based on k̂  values in Table 1.  (c) Proportion 

of transmission expected from the most infectious 20% of cases, for 10 

outbreak or surveillance datasets (triangles).  Dashed lines show proportions 

expected under the 20/80 rule (top) and homogeneity (bottom) (superscripts as 

in Table 1).  (d) Reported superspreading events (SSEs; diamonds) relative to 

estimated reproductive number R (squares) for twelve directly-transmitted 

infections.  Lines show 5-95 percentile range of Z~Poisson(R), and crosses 

show the 99th percentile proposed as threshold for SSEs.  Stars represent SSEs 

caused by more than one source case.  ‘Other’ diseases are: a, Streptococcus 

group A; b, Lassa fever; c, Mycoplasma pneumonia; d, pneumonic plague; e, 

tuberculosis.  See Supplementary Data for details. 

 Fig 2.  Outbreak dynamics with different degrees of individual variation in 

infectiousness. (a) The individual reproductive number ν  is drawn from a 

gamma distribution with mean R0 and dispersion parameter k.  Probability 

density functions are shown for seven gamma distributions with R0=1.5 (‘k=inf’ 

indicates k→∞).  (b) Probability of stochastic extinction of an outbreak, q, versus 

population-average reproductive number R0, following introduction of a single 

infected case.  Values of k are indicated by colours as in (a).  (c) Growth rate of 

simulated outbreaks with R0=1.5 and one initial case, conditional on non-
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extinction.  Boxes show median and interquartile range (IQR) of the first disease 

generation with 100 cases; whiskers show most extreme values within 1.5×IQR 

of the boxes, and crosses show outliers.  Percentages show the proportion of 

10,000 simulated outbreaks that reached the 100-case threshold (roughly 1−q). 

Fig 3. Impact of control measures. (a) Probability of stochastic extinction for 

diseases with different degrees of individual variation, k, under population-wide 

control policies where the infectiousness of all individuals is reduced by a factor 

c.  (b) Increase in extinction probability under individual-specific control 

compared to population-wide control.  In individual-specific control, a randomly-

selected proportion of c of infectious individuals have their infectiousness 

reduced to zero.  In (a) and (b), outbreaks had R0=3 and began with a single 

infectious case, and control was assumed to be present from the outset. (c) 

Estimates of R and k from outbreak datasets before and after control measures 

were initiated (joined by solid lines; Table 2), and post-control estimates of kc 

generated by theoretical models of individual-specific and population-wide 

control.  (d) Effect of random versus targeted control measures.  The probability 

of outbreak containment (defined as never reaching the 100-case threshold) for 

four diseases with R0=3 and k=0.1 (blue), k=0.5 (green), k=1 (black), or k→∞ 

(magenta).  Control policies are population-wide (solid lines), random individual-

specific (dotted lines), or targeted individual-specific (dashed lines) in which half 

of all control effort is focused on the most infectious 20% of cases.  (e) The 

factor by which targeting increased the impact of control relative to random 

individual-specific control (see Supplementary Methods), when 20%, 40% or 

60% of the total population is controlled.  For k→∞, targeting has no effect so 

this factor is 1, and dotted and dashed lines overlay one another in (d).  In (d) 

and (e), results are the mean of 10,000 simulated outbreaks, with control 

beginning in the second generation of cases. 
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Table 1. Model selection and parameter estimation from transmission data  

Negative binomial parameters 

 

Dataset 

 

Model 

 

∆AICc 

Akaike 

weight 
0R̂  or R̂   

90% CI 

k̂   

90% CI 

t20 

90% CI 

SARS 

Singapore 2003 

N=57 

P 

G 

NB 

250.4 

41.2 

0 

0 

0 

1 

1.63† 

0.54-2.65 

0.16 

0.11-0.64 

0.88 

0.60-0.94 

SARS 

Beijing 2003 

N=33 

P 

G 

NB 

49.2 

10.6 

0 

0 

0 

1 

0.94† 

0.27-1.51 

0.17 

0.10-0.64 

0.87 

0.60-0.95 

Measlesv95  

US 1997-1999 

N=165s,pz 

P 

G 

NB 

- 

- 

- 

- 

- 

- 

0.63# 

0.47-0.80 

0.23 

0.16-0.39pz 

0.81 

0.70-0.92 

Measlesv95?  

Canada 1998-2001 

N=49s, pz 

P 

G 

NB 

- 

- 

- 

- 

- 

- 

0.82# 

0.72-0.98 

0.21 

0.12-0.65pz 

0.83 

0.64-0.96 

Smallpox (V. major)v80?  

Europe 1958-1973 

N=32s 

P 

G 

NB 

129.3 

7.4 

0 

0 

0.02 

0.98 

3.19 

1.66-4.62 

0.37 

0.26-0.69 

0.71 

0.59-0.79 
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Smallpox (V. major)v20-70 

Benin 1967 

N=25 

P 

G 

NB 

13.0 

0.8 

0 

0 

0.45 

0.55 

0.80 

0.32-1.20 

0.32 

0.16-1.76 

0.74 

0.44-0.88 

Smallpox (V. major)v 

W. Pakistan 

N=47s, pz 

P 

G 

NB 

- 

- 

- 

- 

- 

- 

1.49# 

 

0.72 

0.44-2.05pz 

 

0.58 

0.41-0.74 

Smallpox (V. minor)v50-70? 

England 1966 

N=25 

P 

G 

NB 

16.4 

0 

1.7 

0 

0.71 

0.29 

1.60 

0.88-2.16 

0.65 

0.34-2.32 

0.60 

0.41-0.73 

Monkeypoxv70  

Zaire 1980-84 

N=147s 

P 

G 

NB 

10.6 

0 

1.0 

0 

0.62 

0.37 

0.32 

0.22-0.40 

0.58 

0.32-3.57 

0.62 

0.36-0.74 

Pneumonic plague  

6 outbreaks  

N=74 

P 

G 

NB 

15.5 

0 

1.5 

0 

0.67 

0.33 

1.32 

1.01-1.61 

1.37 

0.88-3.53 

0.47 

0.37-0.54 

Hantavirus (Andes virus)* 

Argentina 1996 

N=20 

P 

G 

NB 

1.0 

0 

2.3 

0.31 

0.52 

0.17 

0.70 

0.20-1.05 

1.66 

0.24-∞ 

0.45 

0.20-0.80 

Ebola HF* 

Uganda 2000 

N=13 

P 

G 

NB 

0 

1.4 

2.4 

0.56 

0.28 

0.17 

1.50 

0.85-2.08 

5.10 

1.46-∞ 

0.34 

0.20-0.46 
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P, Poisson; G, geometric; NB, negative binomial offspring distribution.  

∆AICc, Akaike information criterion, modified for sample size, relative to lowest score.  

Akaike weight, approximate probability that each model is the best of the models considered.   

0R̂  (or R̂ ) and k̂ , maximum likelihood estimates of mean and dispersion parameter of 

negative binomial distribution, from full observed distribution of Z except where noted.   

t20, expected proportion of transmission due to most infectious 20% of cases, calculated from 

k̂ .  

90% CI, bootstrap confidence intervals based on 10,000 resamples and bias-corrected 

percentile method.   

N, number of infectious individuals in dataset.  

vXXvaccinated population with XX% coverage (?coverage estimated or unknown).  

*results should be interpreted with caution due to small sample size, incomplete contact tracing, 

or atypical nature of outbreak.  

ssurveillance data.  

pzonly mean of Z and proportion of zeros known. Estimation of k̂  and confidence interval on k̂  

described in Supplementary Methods; AIC model selection was not possible. 

†see Supplementary Data for relation to other R0 estimates for SARS.  

#R0 from source article (including 95% CI when given).  

Data and analysis described in the Supplementary Information and Supplementary Table 1. 
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Supplementary Discussion 

Superspreading and the impact of individual variation on disease emergence 

J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz 

 

Factors contributing to variation in infectiousness 

Here we summarize some of the known factors that contribute to differences in 

infectiousness among individuals, gathered from primary reports (including the SSE 

reports collected in Table 1 of the Supplementary Data) and from insightful discussions 

in the literature1-8.  This is a broad and complex topic and we do not intend this section as 

a complete review—we intend simply to delineate important issues and spur further 

research, which will be required to make practical use of the findings presented in the 

main text, particularly with regard to targeting more-infectious individuals for control. 

Variation in individual reproductive number arises due to a combination of host, 

pathogen and environmental effects.  At the host level, distributions of contact rates are 

often skewed9-13 and index cases in SSEs are often noted to have high numbers of 

occupational or social contacts7,10,14.  Increased transmission is correlated with host 

activities that facilitate pathogen dispersion, such as food handling15 and singing16,17.  

Transmission rates can exhibit strong age-dependence10,18, and previously vaccinated 

hosts often are less infectious19,20.  A recent experimental study documented substantial 

variation among human hosts in the amount of ‘exhaled bioaerosols’ (small droplets of 

airway-lining fluid) generated during normal breathing, suggesting a mechanism for 

variation in infectiousness for droplet- or aerosol-transmitted pathogens21.  (This study 

also demonstrated a potential means to reduce infectiousness by altering airway surface 
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properties using inhaled saline solution.)  Other relevant host factors may include hygiene 

habits, immunocompetence, norms regarding bodily contact, and tendency to seek 

treatment or comply with control measures.   

Host-pathogen interactions affect transmission rates via variation in pathogen load 

or shedding15,20 and in symptom severity (which may increase transmission via greater 

shedding or decrease transmission due to reduced contact rate10,15,19,20).  Severe coughing, 

due either to pulmonary involvement of the disease in question22,23 or to coinfections with 

other respiratory pathogens20,24, is often linked to SSEs with suspected airborne 

transmission.  A series of observational and experimental studies has documented the 

potential for upper respiratory tract infections (with a respiratory virus, e.g. rhinovirus or 

adenovirus) to convert nasal carriers of Staphylococcus aureus into highly infectious 

‘cloud’ patients, so-called because they are surrounded by clouds of aerosolized 

bacteria25-28.  This mechanism has been proposed to underlie some SARS SSEs29—a 

proposal that is untested, although generation of viral aerosols by a patient with SARS 

has been demonstrated so the potential for airborne spread exists30,31. 

At the pathogen level, evolution of highly-transmissible pathogen strains is 

possible, but should lead to observable correlations in Z within transmission chains if 

enough generations of uninterrupted transmission are traced closely (rarely the case in 

any non-experimental system).  An open question is the extent to which pathogen biology 

influences the different degrees of heterogeneity observed here.   

Environmental factors have a strong influence on transmission.  Crowded or 

confined settings—such as schools32,33, nightclubs17, markets34, and airplanes23—often 

lead to multiple infections, as can funerals35,36 and hospitals10,37,38 for virulent diseases.  
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Other important environmental factors are the susceptibility of an individual’s contacts, 

due to age, illness10, or lack of (successful) vaccination19,20,39, and the state of medical 

knowledge, particularly for a novel disease such as SARS for which misguided 

procedures and missed diagnoses are inevitable40.  The delay before an infectious patient 

is isolated is an important determinant of individual infectiousness41, and is influenced by 

accuracy of diagnostic criteria, public health resources, severity of symptoms, and 

comorbid conditions10,38,40.  Imperfect disease control measures can increase variation in 

ν, if transmission is concentrated in a few missed cases or pockets of unvaccinated 

individuals10,20,34,37,42.  We emphasize that all of these host, pathogen and environmental 

factors join to comprise a case’s infectious history, which in turn dictates the individual 

reproductive number ν.  Note that ν is a property of a given individual’s infectious 

history, rather than a fixed property of the individual, because an individual’s 

infectiousness may change with time due to differing circumstances.  
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Supplementary Methods 

Superspreading and the impact of individual variation on disease emergence 

J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz 

 

Candidate models for the offspring distribution 

The offspring distribution is the probability distribution for the number of 

secondary cases Z caused by each infectious individual.  We modelled the offspring 

distribution using a Poisson process to represent the demographic stochasticity inherent 

in the transmission process, with intensity ν that could vary to reflect individual variation 

in infectiousness.  The value of ν for a given individual’s infectious history is thus the 

expected number of secondary cases they will cause, i.e. their individual reproductive 

number.  Note that ν is an expectation and can take any positive real value, while Z is 

necessarily a non-negative integer (0,1,2,3,…).  Owing to the influence of circumstance 

on disease transmission, ν is not necessarily a fixed attribute of each individual host, but 

rather is a property of a particular infectious history for a given host  (i.e. the 

circumstances throughout that host’s infectious period).   

The offspring distribution is therefore a Poisson mixture1-5, with mixing 

distribution given by the population distribution of ν, i.e. Z~Poisson(ν).  We consider 

three distinct treatments of the individual reproductive number, yielding three candidate 

models for the offspring distribution.  To aid discussion of epidemiological matters, we 

denote the scale parameter of all offspring distributions by R0; the relation to 

conventional notation is stated below.  (Note that throughout this study, we use the basic 
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reproductive number R0 for uncontrolled transmission in completely susceptible 

populations, and the effective reproductive number R when population immunity or 

control measures are present.  When either measure could apply, we use R0 for notational 

clarity.) 

The three candidate models for the offspring distribution are: 

1. If individual variation is neglected and the individual reproductive number for all 

cases is assumed to equal the population mean (ν=R0 for all cases), then the 

offspring distribution is Z~Poisson(R0). 

2. In models with constant per capita rates of leaving the infectious state (by 

recovery or death), the infectious period is exponentially distributed.  If the 

transmission rate is assumed to be identical for all individuals, then the individual 

reproductive number is exponentially distributed (ν~exponential(1/R0)).  Using 

this expectation in the Poisson process representing transmission yields a 

geometric offspring distribution, Z~geometric(R0)1-3.  (Note: conventional 

notation is Z~geometric(p) where p=1/(1+R0).) 

3. To incorporate variation in individual infectious histories (from a range of 

sources), we introduce a more general formulation in which ν follows a gamma 

distribution with dispersion parameter k and mean R0.  As shown in Figure 2a, this 

includes ν=R0 and ν~exponential(1/R0) as special cases, and also allows enormous 

flexibility to fit real-world complexities (at the expense of an added parameter).  

A Poisson process with this gamma-distributed intensity yields a negative 

binomial offspring distribution with dispersion parameter k and mean R0, 
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Z~NegB(R0,k)1-3.  (Note: conventional notation is Z~NegB(p,k) where 

( ) 1
01 −+= kRp .)  When k=1 the NegB(R0,k) distribution reduces to 

Z~geometric(R0), and when k→∞ it reduces to Z~Poisson(R0). 

In all three candidate models, the population mean of the offspring distribution is R0.  The 

variance-to-mean ratio differs significantly, however, equalling 1 for the Poisson 

distribution, 1+R0 for the geometric distribution, and 1+R0/k for the negative binomial 

distribution.  

 

DATA ANALYSIS 

The major purpose of our statistical analysis is to assess the empirical evidence 

for each of the three candidate models described above, for a number of disease datasets.  

We approach this task using two parallel techniques.  In one approach, we apply 

maximum likelihood methods to estimate model parameters, then use information-

theoretic model selection to determine which model is preferred.  In a second approach, 

we conduct a test for extra-Poisson variability (using the Potthoff-Whittinghill statistic6, 

related to the variance-to-mean ratio); if the Poisson model is deemed unlikely then we 

estimate the negative binomial dispersion parameter k for the dataset.  Because the 

Poisson and geometric models correspond to special values of k, then by estimating 

confidence intervals on our estimate of k we gain insight into the likelihood that the 

Poisson or geometric model is supported by the data.  Summarized results are given in 

Table 1 of the main text, and full results are shown in Supplementary Table 1. 
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Two types of disease datasets were analysed: those with full distributions of Z and 

those where only the mean value of Z and the proportion of zeros (Z=0 values) are 

known.  Descriptions of all outbreaks and issues specific to each dataset are outlined in 

the Supplementary Data.  

When full contact tracing information was available, the dataset consisted of a list 

of Z values for all infected individuals prior to the imposition of control measures.  Some 

datasets are composed of data from several outbreaks merged together, or combined 

surveillance data for the first generation of transmission for many disease introductions.   

In several surveillance datasets only limited information was available.  When the 

mean number of cases caused per index case and proportion of index cases that caused no 

further infections are known, then the negative binomial parameters can be estimated as 

described below.  In some instances the total number of cases in subsequent generations 

of an outbreak was also reported, but this information was not used because we could not 

attribute these cases to specific sources of infection. 

 
 
Parameter estimation and model selection from full datasets 

When full datasets were available, model parameters were estimated by the 

method of maximum likelihood (ML).  For the Poisson, geometric and negative binomial 

models, the ML estimate of the mean of the offspring distribution (i.e. the reproductive 

number, R0 or R) is simply the sample mean7,8.  For the negative binomial distribution, 

the dispersion parameter k is asymptotically orthogonal to the mean and so is estimated 
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independently after substituting the ML estimate of the mean into the likelihood 

expression8,9.   

Estimation of k from finite samples is a challenging problem and has been the 

subject of considerable research9-14.  This body of work shows that it is better to estimate 

k indirectly via its reciprocal α=1/k, as this avoids discontinuities for homogeneous 

datasets (i.e. increasing homogeneity yields α→0 instead of k→∞)9,10,12,13.  Furthermore 

the sampling distribution for α tends to be nearly symmetric10, allowing a more rapid 

approach to asymptotic normality (see Supplementary Figure 5).  Many studies have 

employed simulation methods to assess the bias and efficiency of various statistical 

estimators for the dispersion parameter for finite sample sizes, though regrettably most 

studies investigating ML estimates have focused on k≥1 instead of the parameter range  

of greatest interest here (k<1).  Early work concluded that ML estimation has preferable 

small-sample bias and efficiency properties, and is generally superior (save for its 

computational expense, which is no longer a concern) compared to the method of 

moments and other methods of estimating k8,11.  Recent work shows that ML estimates of 

k have only minor bias (1-3%) for sample sizes N≥20 and k<2 (values of k<1 were not 

tested but the bias appears quite stable for decreasing values; see Fig 1b of Saha & Paul9).  

In all cases where ML estimates of k have been tested by simulation, the bias of small-

sample estimates has been to overestimate the true value of k9,11,13.  Gregory & 

Woolhouse14 conducted an extensive simulation study of estimating k by the method of 

moments, including applicable parameter ranges (k<1), and found a consistent, larger 

positive bias in k estimates for small sample size . As they noted, the positive bias in k 
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(i.e. underestimation of heterogeneity) arises because smaller samples are less likely to 

include the rare extreme values through which the negative binomial distribution 

manifests its heterogeneity. 

We therefore estimated k by applying ML to α=1/k, and final values were 

converted back into dispersion parameters k because this quantity is more familiar to 

epidemiologists and ecologists. ML estimates based on the full distribution of Z are 

denoted here by ˆ k mle .  The termination tolerance on numerical maximization was set 

sufficiently small that negligible accuracy was lost in inverting the estimates, and direct 

ML estimates of k matched k=1/α to beyond the fourth decimal place except as k rose 

toward infinity (and hence needed to be approximated by a large finite value in the direct 

estimation).  We performed goodness-of-fit tests for the negative binomial model (i.e. the 

“global model”) using maximum-likelihood parameter estimates for each dataset, and in 

no case were quasi-likelihood adjustments for overdispersed data required15.   

Having computed the maximum likelihood scores for each dataset, we compared 

the Poisson, geometric and negative binomial models using Akaike’s information 

criterion (AIC)15: 

( )( ) Kdata- 2|ˆLln2AIC += θ  

where ( )( )data|ˆLln θ  is the log-likelihood maximized over the unknown parameters (θ), 

given the model and the data, and K is the number of parameters estimated in the model.  

Because some of our datasets are small, we used the modified criterion AICc, which 

reduces to the conventional expression as sample size N becomes larger15: 
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( )( ) ( )
1
122|ˆLln2AICc −−

+++=
KN
KKKdata- θ  

We rescaled the AICc by subtracting the minimum score for each dataset, and present the 

resulting values ∆AICc.  We then calculated Akaike weights wi for each of the three 

candidate models: 

( )
( )

.
AICexp

AICexp
3

1
c,2

1

c,2
1

∑
=

∆−

∆−
=

j
j

i
iw  

The Akaike weight wi can be interpreted as the approximate probability that model i is 

the best model of the set of candidate models considered, in the sense of combining 

accurate representation of the information in the data with a parsimonious number of 

parameters15. 

 

Parameter estimation from mean and proportion of zeros  

When surveillance datasets did not include full information on the distribution of 

Z, but included the total number of disease introductions and the number of these that led 

to no secondary cases, then 0p̂ , the proportion of primary cases for whom Z=0, could be 

estimated.  If the total number of second-generation cases is reported16, then it was 

divided by the number of introductions to estimate 0R̂ .  In the studies on measles in the 

United States and Canada, data were not available to estimate 0R̂  ourselves so data-

derived estimates of 0R̂  from the original reports were used17,18.  
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Given estimates of the mean ( 0R̂ ) and proportion of zeros ( 0p̂ ) of a negative 

binomial distribution, the dispersion parameter k can be estimated by solving the equation 

( ) k
kRp

−
+= ˆ1ˆ 0  numerically8.  We denoted the resulting estimates ˆ k pz .  This estimator is 

known to be less efficient and more biased than the ML estimator8,11, but to ascertain the 

accuracy of this method of estimation for our analyses, we compared ˆ k pz  and ˆ k mle  for 

several outbreaks for which we had full information on Z (Supplementary Fig 4).  The 

proportion of zeros estimate is quite accurate, particularly for k̂ <1, but is usually slightly 

higher than ˆ k mle  and has a broader confidence interval. 

Because the estimates ˆ k pz were not obtained using ML methods, the AIC approach 

to model selection was not applicable.  Conclusions regarding these datasets were based 

entirely on confidence intervals for k, described below. 

 

Testing for deviation from Poisson homogeneity 

 A great deal of research has addressed the statistical question of assessing whether 

a count dataset has significant deviations from a homogeneous Poisson distribution2,5,6.  

After reviewing the performance of numerous possible test statistics5, we selected the 

Potthoff-Whittinghill ‘index of dispersion’ test, which is asymptotically locally most 

powerful against the negative binomial alternative6.  For a dataset X with N elements, this 

statistic is (N–1)*var(X)/mean(X) and its asymptotical distribution is chi-squared with N–

1 degrees of freedom.  A p-value is obtained by determining the cumulative density of the 
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chi-squared(N–1) distribution to the right of the test statistic, and represents the 

probability that the observed variance arose by chance from a Poisson distribution. 

 

Confidence intervals for k 

Estimation of accurate confidence intervals for the negative binomial dispersion 

parameter k estimated from finite samples is a difficult challenge.  Many applied studies 

reporting values of k do not report confidence intervals19,20; those that do typically report 

a single measure, often the ML sampling variance21.  Because of the recognized difficulty 

of establishing accurate confidence intervals for k, we adopted the conservative approach 

of applying multiple independent methods, from fully non-parametric to fully parametric, 

and evaluating their results in aggregate.  Because the intervals obtained using this suite 

of methods are very similar, we have confidence in the reported intervals as approximate 

ranges of uncertainty22.  We chose to report 90% confidence intervals, since the more 

extreme values (needed for, say, a 95% confidence interval) are most difficult to estimate 

accurately. 

We estimated 90% CIs for k using the following five methods.  The first three 

approaches require a full dataset (i.e. the full observed distribution of Z), while the latter 

two require only the mean and proportion of zeros.  All full datasets were analysed using 

all five methods, while reduced datasets were analysed only using the latter two.  See 

Supplementary Table 1 for these results. 
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1.  Non-parametric bootstrap:  Bootstrap datasets were generated by re-sampling with 

replacement from the original data.  For each bootstrap dataset, the ML estimates of 0R̂  

and k̂1ˆ =α  were determined as described above, generating a bootstrap sampling 

distribution.  Confidence intervals were constructed using the bias-corrected percentile 

method23,24, because both parameters are restricted to positive real values and tended to 

have skewed bootstrap distributions for which the median of bootstrap estimates did not 

equal the parameter estimate from the original dataset. (Note that the sampling 

distribution of α is more symmetric than that of k, but bias-correction was employed to 

remove any skew; see Supplementary Fig. 5).  This method is second order 

asymptotically accurate (i.e. the difference between real and desired coverage is 

asymptotically O(1/N) for sample size N) for even-tailed two-sided intervals25, but 

bootstrap confidence intervals of asymmetric distributions are still prone to errors in 

coverage24 so the displayed intervals are intended as approximate ranges of uncertainty.  

We employed 10,000 resamples with replacement to generate our simulated bootstrap 

distributions.  Datasets with very few non-zero values of Z generated significant 

proportions of bootstrapped datasets with all zeros.  Such all-zero datasets contain 

insufficient information to estimate k̂ , so when 5% or more of bootstrapped datasets 

contained only zero values the bootstrap 90% confidence interval was undefined.  

 

2.  Parametric bootstrap:  Bootstrap datasets were generated using a negative binomial 

random number generator (nbinrnd in Matlab) using the ML parameters estimated from 

the original data.  This approach eliminates the influence of the particular Z values in the 
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original dataset, allowing for a more continuous distribution of Z in the bootstrap 

datasets, but makes a stronger assumption regarding the mechanism generating the 

data23,25.  Confidence intervals were generated exactly as for the non-parametric bootstrap 

datasets. 

 

3.  Maximum-likelihood sampling variance:  ML parameter estimates have large-

sample variance given by the inverse of the Fisher information matrix, and thus 

asymptotically approach the Cramer-Rao bound for minimum-variance estimators7.  For 

the negative binomial dispersion parameter k̂ , or its reciprocal α̂ , the asymptotic 

sampling variance cannot be expressed in closed form but is easily calculated 

numerically8,9; note the relationship ( ) ).ˆ(1ˆ 4 kVarkVar =α 10  We calculated the large-

sample variance for α̂ , denoted 2
α̂σ , and estimated the 90% confidence interval for α̂  as 

[ ]αα σασα ˆ95.0ˆ95.0 ˆ,ˆ zz mlemle +− , where z0.95 is the 95th percentile of the standard normal 

distribution7.  The confidence interval for k̂  was then generated by inverting these two 

endpoints.  

 

4. Large-sample variance of ˆ k pz :  The large-sample variance of ˆ k pz  has been derived by 

Anscombe8 using a general moment method.  For all datasets (including the full datasets), 

this quantity was calculated and confidence intervals generated using the approach 

outlined in method 3, above. 
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5.  Binomial sampling variance in 0p̂ :  In our final approach, informal inference on ˆ k pz  

was performed based on the binomial sampling variability of 0p̂ , the proportion of 

infectious cases that cause no transmission.  Exact 90% confidence intervals on 0p̂  were 

obtained using the method of Clopper and Pearson26; these intervals are the most 

conservative of many alternative binomial confidence intervals, guaranteeing coverage of 

at least 90% and often considerably more due to discreteness of the binomial 

distribution27.  Utilizing the fact that the asymptotic covariance of 0R̂  and k̂  is zero8, the 

estimate of 0R̂  (by other means) is taken as a given, and the confidence interval for k̂  is 

determined by calculating ˆ k pz  for each endpoint of the confidence interval for 0p̂ . 

 

Expected proportions of transmission 

The expected proportion of transmission due to a given proportion of the 

population, plotted in Fig 1b, was calculated as follows.  First we estimated R0 and k, 

which specify the pdf fν(x) and cdf Fν(x) of the gamma-distribution describing the 

individual reproductive number ν for a given disease and population.  We then calculated 

the cumulative distribution function for transmission of the disease: 

∫=
x

duufu
R

xF
00

trans )(1)( ν  

such that Ftrans(x) is the expected proportion of all transmission due to infectious 

individuals with ν < x.  The expected proportion of transmission due to individuals with 

ν > x is thus 1−Ftrans(x), while the proportion of individuals with ν > x is 1−Fν(x).  These 
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quantities were plotted parametrically as a function of x to make Fig 1b.  Similarly, the 

expected proportion of transmission due to the most infectious 20% of cases, t20, was 

calculated by finding x20 such that 1−Fν(x20)=0.20, then t20=1−Ftrans(x20) (see Fig 1c). 

 

Superspreading events (SSEs) 

Factors contributing to superspreading events are reviewed in the Supplementary 

Discussion.  Case reports corresponding to data in Fig 1d are summarized in Table 1 of 

the Supplementary Data.  The percentile intervals in Fig 1d were generated directly from 

the Poisson distribution, with reproductive numbers drawn from specific studies of the 

relevant diseases where possible, or otherwise from compiled estimates (see 

Supplementary Data).  These latter estimates of R0 are intended to be indicative only, 

since they do not necessarily describe the same population setting or disease strain as the 

SSEs in question. 

Our proposed definition of superspreading events enables prediction of the 

frequency of SSEs, Ψ, for diseases with different degrees of individual variation 

(Supplementary Fig 1).    Once the threshold number of cases Z(99) has been defined for a 

99th-percentile SSE under effective reproductive number R, then for any k one can 

calculate from Z~NegB(R,k) the proportion of individuals ΨR,k expected to generate 

Z>Z(99).  (Because this requires estimates of R and k, ‘real-time’ estimation of Ψ for an 

outbreak in progress is subject to any biases in the available data.  It is possible that SSEs 

will be over-represented in available datasets precisely because of their important role in 

early survival of disease invasions when significant individual variation exists.)  In a 
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homogeneous population (k→∞), ΨR,∞≤0.01 by definition (where the less-than arises 

because the Poisson distribution is discrete; see below).  When heterogeneity is 

accounted for, ΨR,k>ΨR,∞ and varies strongly with both R and k, peaking between k=0.1 

and k=1 for the low R values of interest for emerging diseases.  Because the variance-to-

mean ratio is fixed at 1 for the Poisson distribution but increases linearly with R for the 

NB model, for moderate k values ΨR,k increases strongly with R as the relative density of 

Z>Z(99) increases.  Note that the proportion of 99th-percentile SSEs, ΨPoisson, is often less 

than 1%, because Poisson(R) is a discrete distribution and for arbitrary R there is unlikely 

to be an integer Z(99) such that FPoisson(R)(Z(99)) equals 0.99 exactly.  As a result, the 

proportion of cases causing SSEs under the negative binomial model, ΨR,k, may approach 

some value less than 0.01 as k→∞.  In plotting Supplementary Fig 1, we chose values of 

R such that ΨPoisson=ΨR,∞=0.01 and all plotted lines approached the same asymptotic 

value.  These values were computed simply by examining Poisson cdf’s for different R.  

Precise values of R in Supplementary Fig 1 are 0.148, 0.436, 1.279, 2.330, 3.507, 6.099, 

10.345, and 20.323.  Note that this effect of the discreteness of the Poisson distribution, 

while a nuisance in making plots, has little practical impact in this context because most 

diseases have k<5 (Table 1). 

 

DYNAMIC MODELLING 

Branching process model and analysis 

We studied the properties of stochastic disease invasions using a single-type 

branching process model, which allowed us to incorporate individual heterogeneity in 
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infectiousness by varying the offspring distribution.  This model of invasion assumes that 

the supply of susceptible individuals is not limiting for the outbreak, and that the numbers 

of secondary cases (‘offspring’) caused by each infectious individual are independent and 

identically distributed.  Branching process models are summarized in depth elsewhere28, 

as are their particular applications to modelling disease invasion29. 

The heart of a branching process model is the offspring distribution, which 

describes the probability distribution of the number of new cases Z caused by each 

infectious individual, i.e. it sets pk=Pr(Z=k) for k=0,1,2,3,… . Analysis of branching 

process models centers on the probability generating function (pgf) of the offspring 

distribution, denoted g(s): 

k

k
k spsg ∑

∞

=

=
0

)( ,  |s|≤1 

Two important properties of the epidemic process follow directly from g(s).  The basic 

reproductive number, R0, is by definition the mean value of Z, and is equal to g′(1).  The 

probability that an infectious individual will cause no secondary infections, p0=Pr(Z=0),   

is g(0).  Thus a great deal can be learned about an outbreak from the y-intercept of the 

pgf and its slope at s=1. 

  The nth iterate of the pgf, gn(s), is the pgf of Zn, the number of cases in the nth 

generation, and is defined as follows: g0(s)=s, g1(s)=g(s), and gn+1(s)=g(gn(s)) for 

n=1,2,3,… 28.  The probability that the epidemic has gone extinct by the nth generation is 

thus gn(0).  We denote the probability of extinction as n→∞ by q, then q is a solution to 

the equation q=g(q) (from gn+1(s)=g(gn(s)) with n→∞), which from monotonicity and 
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convexity of g(s) has at most one solution on the interval (0,1)28.  When R0≤1, the only 

solution to q=g(q) is q=1 and disease extinction is certain; when R0>1, there is a unique 

positive solution less than one28. 

Finally, the pgf for the total number of individuals infected in all generations of a 

minor outbreak (i.e. one that goes extinct) is defined implicitly as G(s)=sg(G(s))28.  The 

expected size of a minor outbreak is then G′ (1), and can be calculated numerically for a 

given g(s). 

For our treatment of the transmission process, we assume that each individual’s 

infectious history has an associated individual reproductive number ν, drawn from some 

distribution with pdf fv(u).  Demographic stochasticity in transmission is then represented 

by a Poisson process, as is standard in branching process treatments of epidemics29.  This 

yields the following pgf for a Poisson distribution with mean ν distributed as fv(u): 

( )∫
∞

−−=
0

1 )()( duufesg su
ν  

If ν is a constant, R0, then the pgf is:  

( )sResg −−= 10)(  

If ν is exponentially distributed with mean R0, the resulting offspring distribution is 

geometric with mean R0
1-3 and pgf:   

 ( )( ) 1
0 11)( −−+= sRsg  

If ν is gamma distributed, with mean R0 and dispersion parameter k, the resulting 

offspring distribution is negative binomial, also with mean R0 and dispersion parameter 

k1-3, with pgf:   
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k
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⎜
⎝
⎛ −+= 11)( 0  

This expression was applied in all of the general branching process results shown above 

to derive our results.  The expression q=g(q) was solved numerically to generate Fig 2b 

and Supplementary Fig 2b, showing the dependence of the extinction probability on R0 

and k.  The negative binomial pgf itself is plotted in Supplementary Fig 2a, showing how 

the probability of infecting zero others (p0) increases sharply with k for a given R0.  The 

expected size of minor outbreaks (Supplementary Fig 2c) was plotted by solving G′ (1) 

numerically for a range of values of R0 and k.  The probability of extinction in the nth 

generation (Supplementary Fig 2d) was calculated using gn(0)−gn−1(0).  These numerical 

solutions match the averaged output of many simulations precisely, for R0 above and 

below zero, and for k→0 and k→∞.   

 

Branching process simulations 

To assess the growth rate of major outbreaks, a branching process epidemic was 

implemented by simulation, beginning with a single infectious individual (Fig 2c, 

Supplementary Figs 2e,f).  For each infectious individual, the individual reproductive 

number ν was drawn from a gamma distribution with chosen values of R0 and k, using the 

gamrnd function in Matlab (v6.1 R13, MathWorks, Cambridge MA) adapted to allow 

non-integer k.  The number of secondary cases Z caused by that individual was then 

determined by drawing a Poisson random variable with mean ν, using the Matlab 

function poissrnd.  Each individual was infectious for only one generation, and the total 
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number of infected individuals in each generation was summed.  The first generation to 

reach 100 cases was used as an arbitrary benchmark of epidemic growth rate. 

 

ANALYSIS OF DISEASE CONTROL 

Control policies—theoretical development  

We consider an epidemic that has a natural (i.e. uncontrolled) offspring 

distribution Z~NegB(R0,k), from which we know the probability of infecting zero others 

is p0=(1+R0/k)−k.  Under the population-wide control policy, every individual’s 

infectiousness is reduced by a factor c so their expected number of secondary cases is 

reduced from ν to pop
cν =(1−c)ν and the realized number is pop

cZ ~Poisson((1−c)ν).  The 

reproductive number under control, pop
cR  (denoted R in the main text, for simplicity), 

equals (1−c)R0.  If uncontrolled individual reproductive numbers are gamma-distributed, 

ν~gamma(R0,k), then only the scale parameter of the resulting negative binomial 

distribution is affected by population-wide control (the dispersion parameter k is 

unchanged) and pop
cZ ~NegB((1−c)R0,k).  The variance-to-mean ratio of pop

cZ  is 

1+(1−c)R/k, and decreases monotonically as control effort increases. 

 

Under individual-specific control, each infected individual is controlled 

perfectly (such that they cause zero secondary infections) with probability c.  Imposition 

of individual-specific control influences transmission only for the fraction 1−p0 of 

individuals whose natural Z value is greater than zero—of these a fraction c have ind
cZ =0, 
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while the remaining fraction 1−c are unaffected and have ind
cZ =Z.  Under an individual-

specific control policy, therefore, the proportion of cases causing zero infections is 

( )00
ind
0 1 pcpp −+=  and the population mean 

( ) ( )ind
0

1 1

1 1Pr(case  not controlled) 1 1
N N

c i i
i i

R Z i c Z c R
N N= =

= = − = −∑ ∑ .  The exact 

distribution of ind
cZ  is defined by Pr( ind

cZ =0)= ind
0p  and Pr( ind

cZ =j)=(1−c)Pr(Z=j) for all 

j>0, i.e. the distribution of ind
cZ  has an expanded zero class relative to Z, while for non-

zero values its density is simply reduced by a factor (1−c) from Z~NegB(R0,k).  Hence, 

the offspring distribution under individual-specific control has pgf: 

( ) ( )0
ind ( ) 1 1 1

kRg s c c s
k

−
⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

 

The variance-to-mean ratio of ind
cZ  can be calculated from 

( ) ( ) ( )( )( ) ( )2
ind ind ind ind1 1 1 1g g g g′′ ′ ′ ′+ −  28 and shown to equal 1+R0/k+cR0, which increases 

monotonically as c increases. 

For direct comparison with other offspring distributions in our analysis, this 

composite distribution under individual-specific control can be approximated by a new 

negative binomial distribution, NBind,
cZ ~NegB( ind

cR , ind
ck ) where ind

cR  is given above and 

ind
ck  is estimated using the proportion of zeros method as the solution to 

( ) ( )
ind

ind ind ind
0 0 01 1 ck

c cp p c p R k
−

= + − = + .  The approximated dispersion parameter ind
ck  

decreases monotonically as control effort c increases (Supplementary Fig 3a).  This 
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approximation yields better than 95% overlap with the exact distribution for k≤1, and 

better than 85% overlap for almost all of parameter space (Supplementary Fig 3c).  (The 

proportion of overlap is calculated as ( ) ( ) 2PrPr1
0

NBind,ind ⎟
⎠

⎞
⎜
⎝

⎛ =−=− ∑
∞

=i
cc iZiZ , which 

scales from 0 to 1 as the two distributions go from completely non-overlapping to 

identical.)  The approximation approaches exactness for c→0 and c→1, and is least 

accurate for large values of k because it is unable to mimic the bimodal distribution of 

ind
cZ  (Supplementary Fig 3d). 

 

Relative efficacy of control policies 

For population-wide control, with all individuals’ transmission reduced by a 

factor c, the offspring distribution is pop
cZ ~NegB((1−c)R0,k) and has pgf: 

( ) ( )0
pop ( ) 1 1 1 .

kRg s c s
k

−
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

 

For individual-specific control, with a random proportion c of individuals 

controlled absolutely, the exact pgf (i.e. not the negative binomial approximation) is as 

given above: 

( ) ( )0
ind ( ) 1 1 1 .

kRg s c c s
k

−
⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

 

 

Claim: For all c ∈ (0,1−1/R0), the probability of extinction is always greater under 

individual-specific control than under population-wide control. 
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Proof of claim: Define ( )( ) k

k
R sxxG

−
−+= 11)( 0  where X is a Bernoulli random variable 

with a probability 1−c of success.  Since G is a convex function, Jensen’s inequality 

implies that 

( )( ) ( )( )pop ind( ) ( )g s G E X E G X g s= < =  (*)

whenever c ∈ (0,1) and s ∈ [0,1).  Furthermore, for the nth iterates of the pgf we have 

from (*) that 

pop, ind,(0) (0)n ng g<  

so the probability of disease extinction by the nth generation is always greater under 

individual-specific control. Thus if c ∈ (0,1−1/R0), the probability of ultimate extinction 

under individual-specific control is greater than that under population-wide control, i.e. 

popind qq > . If c > 1−1/R0, then pop ind 1c cR R= <  so that .1popind == qq  That is, the 

threshold control effort required to assure disease extinction is c = 1−1/R0 (provided 

individual-specific control is applied to randomly-chosen individuals).  

 

To consider the efficacy of control policies targeting the more infectious individuals in a 

population, we consider a general branching process whose pgf is given by 

( ) ( ) ( )∫
∞

−−=
0

1 duufesg su
ν  

where fv(u) is the pdf of the individual reproductive number ν for the outbreak in 

question. 
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For a control strategy C : [0,∞) → [0,1] in which the probability of absolutely controlling 

a case with individual reproductive number ν is C(ν), the pgf of the branching process 

becomes 

( ) ( ) ( )( ) ( )∫
∞

−− −+=
0

1 1 duufuCecsg su
C ν  

where 

( ) ( )∫
∞

=
0

duufuCc ν  

is the fraction of individuals controlled on average. For example, random individual-

specific control corresponds to choosing C(ν)=c for all ν.  Maximally-targeted control, in 

which the top c × 100% of infectious individuals are controlled absolutely, corresponds to 

choosing 

( )
⎩
⎨
⎧

≥
<

=
c

cC
νν
νν

ν
  if1
  if0

 

where νc satisfies ( ) .cduuf
c

=∫
∞

ν
ν  

 

Note that when ν is gamma-distributed with mean R0 and dispersion parameter k, the pgf 

under maximally-targeted control is 

( ) ( ) ( )( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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where ( ) ∫
∞

−−=Γ
b

tk dtetbk 1,  and ( ) ( ).0,kk Γ=Γ  

 

For any distribution of ν represented by fv(u), we can make the following claim: 

Claim: Let C1 and C2 be two control strategies that satisfy ( ) ( ) cduufuCi =∫
∞

0
ν  and 

( ) ( ) ( ) ( )∫∫
∞∞

>
xx

duufuCduufuC νν 21  
(**)

for all x > 0, so that C1 targets higher-ν individuals to a greater degree.  Then the 

reproductive number under strategy 1 ( 1C
cR ) is less than that under strategy 2 ( 2C

cR ). 

Moreover, if 2C
cR >1, then the probability of extinction is greater under strategy 1. 

 

Proof of Claim: The claim 21 C
c

C
c RR <  is equivalent to ( ) ( ).11

21 CC gg ′<′   Recall that if X 

and Y are positive random variables such that P(X > x) > P(Y > x) for all x > 0, then 

E(X)>E(Y)3. Define Xi to be the positive random variable with the pdf 

( )( ) ( )ufuC
c i ν−

−
1

1
1  

for i=1,2.  By (**) we have 

( )( ) ( ) ( )( ) ( ) )(1
1

11
1

1)( 1122 xXPduufuC
c

duufuC
c

xXP
xx

>=−
−

>−
−

=> ∫∫
∞∞

νν  

for all x > 0.  Hence 

( ) ( ) ( ) ( ) ).1(11)1(
12 12 CC gXEcXEcg ′=−>−=′  
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The second assertion of the claim is equivalent to the statement that )()(
21

sgsg CC > for 

all s ∈ [0,1).  To prove this, define Yi=exp(−Xi(1−s)). Since exp(−x(1−s)) is a decreasing 

function of x for s ∈ [0,1) and P(X2>x)>P(X1>x) for all x > 0, we have P(Y1>x)>P(Y2>x) 

for all x>0. Hence, ( ) ( ) ( ) ( ) ),(11)(
21 21 sgYEccYEccsg CC =−+>−+=  and as argued 

above we have )0()0( ,, 21 nCnC gg >  for all generations n and therefore .21 CC qq >  

 

To see the utility of this claim, let us consider two control strategies C1 and C2 

that control two portions of the population in different ways. Suppose strategy Ci controls 

the less-infectious portion of the population (i.e. *νν < ) with probability ai and controls 

the more-infectious portion of the population (i.e. *νν ≥ ) with probability bi.  In other 

words 

( )
⎩
⎨
⎧

≥
<

= *

*

  if
  if

νν
ννν

i

i
i b

a
C  

Moreover, let us assume that both strategies control the same fraction of individuals, i.e. 

( ) ( ) cduufuCi =∫
∞

0
ν  for i=1,2.  Suppose that strategy 1 targets more-infectious individuals 

to a greater degree than strategy 2, i.e. b1> b2 and thus a1<a2.  This is a generalized 

formulation of the targeted control scenario discussed in the main text (Fig 3d,e), for 

which strategy 1 defines *ν  as the solution to ( ) 80.0
*

0

=∫
ν

ν duuf  and takes b2=4×a2, 

whereas strategy 2 is non-targeted individual-specific control with a2=b2=c.  For *νν ≥ : 
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( ) ( ) ( )

( ) ( ) ( )∫∫

∫∫
∞∞

∞∞

=>

=

ν
ν

ν
ν

ν
ν

ν
ν

duufuCduufb

duufbduufuC

22

11

 

and for *νν < : 

( ) ( ) ( )

( ) ( ) ( ) .2
0

2

0
11

∫∫

∫∫
∞

∞

=−>

−=

ν
ν

ν

ν

ν

ν
ν

ν

duufuCduufac

duufacduufuC

 

Condition (**) is fulfilled, so 21 C
c

C
c RR <  and ,21 CC qq >  corroborating the simulation 

results for targeted control (Fig 3d,e; Supplementary Fig 3b). 

 

In general, the more a control policy targets the more-infectious individuals, the 

higher the probability of disease extinction and the slower the growth rate of an outbreak 

in the event of non-extinction.  For any individual-specific control program that targets 

more-infectious individuals more than random (denoted by subscript ‘tar’), then for a 

given control effort c ∈ (0,1) we have 

tar ind pop( ) ( ) ( )g s g s g s> >  

for all s ∈ [0,1), so targeted individual-specific control is always more effective than 

random individual-specific control, which in turn is always better than population-wide 

control. 
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Control policies—simulations  

Control simulations (Figs 3d,e, Supplementary Fig 3b): The branching process simulation 

from Fig. 2c (described above) was used.  For population-wide control, every infected 

case’s individual reproductive number was reduced to (1−c)ν before a Poisson random 

variate was drawn to determine the number of infections caused.  For random individual-

specific control, every infected case had probability c of having ν reduced to zero before 

the Poisson random variate was drawn.  For targeted individual-specific control, the total 

proportion of the population subject to control was c, but the probability of control for a 

top-20% individual was four times greater than that for a bottom-80% individual, e.g. 

Pr(control, top-20%)=1/4 and Pr(control, bottom-80%)=1/16, yielding Pr(control, 

overall)=1/10.  Under this four-fold targeting, equal effort (in terms of total numbers 

controlled) is expended on top-20% and bottom-80% individuals.  

Targeted control was simulated as follows.  For each combination of R0 and k, the 

cutoff value of ν dividing top-20% from bottom-80% infectiousness was established from 

the cdf of ν.  During the simulation, after a value of ν was drawn from the gamma(R0,k) 

distribution for each infected individual, they were assigned to the top-20% or bottom-

80% categories. For individuals in either category, a uniform random variate on [ ]0,1  

was drawn, and if it was less than the probability of control for that category then that 

individual’s value of ν was reset to zero.  The realized number of secondary infections Zc 

was then generated by drawing a Poisson random variate with mean ν.   

For the simulations shown in Fig 3d, control was initiated in the second 

generation (i.e. the index case was not subject to control), representing a delay in 
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recognition of the outbreak.  Containment of an outbreak was defined as preventing it 

from growing to the point of a generation with 100 cases.  Since a branching process that 

escapes control will grow without bound, results were not sensitive to this arbitrary 

threshold.  The relative effect of targeted control (Fig. 3e) was computed as follows.  The 

uncontrolled probability of a major outbreak for the given R0 and k was computed as 

1−Pr(containment|0% control).  The contribution of control efforts to containment was 

then calculated as:  

Contrib(control policy) = Pr(containment|control policy)−Pr(containment|0% control). 

 

The relative effect of targeted control, plotted in Fig 3e, was then: 

Relative effect = Contrib(targeted indiv. control)/Contrib(random indiv. control). 

This quantity equals 1 for k→∞, since targeting has no effect on a homogeneous 

population, but is greater than 1 for all finite values of k. 
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Supplementary Figures 

Superspreading and the impact of individual variation on disease emergence 

J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz 
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Supplementary Fig 1.  Expected proportion of cases causing 99th-percentile 

SSEs, ΨR,k, for outbreaks with Z~NegB(R,k).  Values of the effective reproductive 

number R were selected such that Pr(Z≤Z(99)|Z~Poisson(R))=0.01. 
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Supplementary Fig 2. Branching process results for Z~NegB(R0,k).  (a) The 

probability generating function of the negative binomial distribution, plotted for R0=3 and 

different dispersion parameters k.  The y-intercept of the pgf equals p0, the probability 

that an infected individual will infect nobody, and is a major factor in the rising 

probability of extinction as k decreases.  The extinction probability q is determined by the 

point of intersection of the pgf with a line of slope 1 (dashed) through the origin.  (b) The 

probability of stochastic extinction given introduction of a single infected individual, q, 

rises to 1 as k→0 for any value of R0. 
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Supplementary Fig 2. Branching process results for Z~NegB(R0,k) (cont).  (c) 

Expected size of a minor outbreak (i.e. an outbreak that dies out spontaneously) versus 

R0.  Curves for all k values are identical for R0<1. (d) The probability of stochastic 

extinction by the nth generation of transmission, qn, for R0=3 and a range of k.  

Interestingly,  for the third and subsequent generations, the k=1 case has the highest 

continuing probability of extinction.  
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Supplementary Fig 2. Branching process results for Z~NegB(R0,k) (cont).   

(e) Growth rate of simulated outbreaks with R0=1.1 and one initial case, conditional on 

non-extinction.  Boxes show median and interquartile range (IQR) of the first disease 

generation with 100 cases; whiskers show most extreme values within 1.5×IQR of the 

boxes, and crosses show outliers.  Percentages show the proportion of 10,000 simulated 

outbreaks that reached the 100-case threshold (i.e. roughly 1-q).  (f) Growth rate of 

simulated outbreaks with R0=3.  Both (e) and (f) are exactly analogous to Fig 2c except 

for different values of R0.  
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Supplementary Figure 3. Impact of control measures.  (a) The approximated 

dispersion parameter ind
ck  decreases monotonically as control effort c increases.  Curves 

depict uncontrolled k=1000 (blue), k=1 (green), and k=0.1 (red), for R0=1 (solid), R0=3 

(dotted), and R0=10 (dashed). (b) Effect of control measures targeting the most infectious 

individuals.  The plot is exactly analogous to Figures 3d,e in the main text, except that in 

the targeted control scenario individuals in the top 20% of infectiousness are ten-fold 

more likely to be controlled than those in the bottom 80% (rather than four-fold more 

likely as in Figures 3d,e), so 71% of control effort is focused in the top 20% of cases 
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(rather than 50% in Figures 3d,e). (c) Accuracy of the approximation whereby the 

offspring distribution under random individual-specific control is represented by a 

negative binomial distribution, NBind,
cZ ~NegB( ind

cR , ind
ck ).  Contours show the proportion 

of overlap between the exact and approximated offspring distributions, calculated as 

described in the Supplementary Methods. (d) Exact and approximated negative binomial 

offspring distributions under individual-specific control for R0=3.  From bottom to top, 

five curves for both the exact (red solid lines and circles) and approximate (black dashed 

lines and squares) distributions show k=0.1, 0.5, 1, 3, and 10.  
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Supplementary Fig 4.  Comparison of maximum likelihood and proportion of zeros 

estimates and 90% confidence intervals for the negative binomial dispersion 

parameter k.  Each point corresponds to an outbreak for which we have full information 

on Z, so we are able to estimate ˆ k mle  and the corresponding bias-corrected bootstrap 

confidence interval.  For the same dataset, we then discarded all information except the 

mean and proportion of zeros and estimated ˆ k pz  and Anscombe’s large-sample 

confidence interval (method 4 in Supplementary Methods).  

 



Lloyd-Smith et al.  6/8/2005 
 

Suppl. Figures Page 8 
 

a 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Dispersion parameter, k

B
oo

ts
tr

ap
 s

am
pl

in
g 

di
st

rib
ut

io
n

 
b 

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

600

700

800

900

Reciprocal of dispersion parameter, 1/k

B
oo

ts
tr

ap
 s

am
pl

in
g 

di
st

rib
ut

io
n

 
 
 

Supplementary Fig 5.  Bootstrap sampling distributions for the negative binomial 

dispersion parameter k and its reciprocal α=1/k.  Distributions of maximum-

likelihood estimates of k and α generated by 10,000 non-parametric resamples of the 

pneumonic plague dataset (N=74).   



Supplementary Table 1. Summary of data analyses

Parameter estimation
SARS,

Singapore

SARS, Beijing 

(gen 2 only)

SARS, Beijing 

(gens 1 and 2)

Measles,

USA

Measles,

Canada

Pneumonic

plague,

6 outbreaks

Hantavirus,

Argentina

N 57 33 34 165 49 74 20

mean (R_0 or R ) 1.63 0.94 1.88 0.63 0.82 1.32 0.7

k_mle 0.16 0.17 0.12 1.37 1.66

k ,pz 0.17 0.17 0.13 0.23 0.21 1.25 1.94

var(Z )/mean(Z ) 15.31 5.45 18.7 1.84 1.52

Number of zeros in dataset (Z=0) 38 24 24 122 35 30 11

p_0 0.6667 0.7273 0.7059 0.7394 0.7143 0.4054 0.5500

Binomial 90CI on p _0 0.5503,0.7695 0.5724,0.8497 0.5524,0.8309 0.6772, 0.7950 0.5899,0.8183 0.3090,0.5076 0.3469,0.7414

Model selection
∆AIC(P) 250.4 49.2 183.4 15.5 1

∆AIC(G) 41.2 10.6 31.4 0 0

∆AIC(NB) 0 0 0 1.5 2.3

Akaike weight(P) 0 0 0 0 0.31

Akaike weight(G) 0 0 0 0.67 0.52

Akaike weight(NB) 1 1 1 0.33 0.17

P-W test p -value <1e-6 <1e-6 <1e-6 1.6e-5 0.068

90% Confidence intervals for k
Non-parametric bootstrap (uncorrected) 0.10, 0.36 0.08, 0.46 0.06, 0.31 0.82, 3.00 0.46, inf

1. Non-parametric bootstrap (bias-corrected) 0.11, 0.64 0.10, 0.64 0.08, 0.42 0.88, 3.53 0.65, inf

Number of all-zero bootstrap datasets 0 0 0 0 0

Parametric bootstrap (uncorrected) 0.09, 0.28 0.08, 0.49 0.06, 0.27 0.80, 3.61 0.44, inf

2. Parametric bootstrap (bias-corrected) 0.10, 0.30 0.11, 0.78 0.08, 0.33 0.88, 4.58 0.68, inf

Number of all-zero bootstrap datasets 0 1 0 0 0

3. Maximum-likelihood sampling variance 0.10, 0.32 0.10, 0.79 0.07, 0.37 0.84, 3.86 0.54, inf

4. Large-sample variance on k_pz 0.11, 0.36 0.09, 0.80 0.07, 0.38 0.16, 0.39 0.12, 0.65 0.75, 3.76 0.57, inf

5. Binomial sampling variance on p _0 0.09, 0.34 0.06, 0.58 0.05, 0.30 0.13, 0.44 0.08, 0.64 0.56, 5.12 0.20, inf

Legend

Quantity cannot be calculated with available data



Parameter estimation

Smallpox

surveillance,

Europe

Smallpox,

Benin

Smallpox,

W. Pakistan

Variola minor, 

England

Monkeypox

surveillance,

Zaire

Rubella,

Hawaii*

Ebola HF, 

Uganda

N 32 25 47 25 147 19 13

mean (R_0 or R ) 3.19 0.8 1.49 1.6 0.32 1 1.5

k_mle 0.37 0.32 0.65 0.58 0.032 5.1

k ,pz 0.42 0.29 0.72 0.53 0.58 0.032 2.31

var(Z )/mean(Z ) 8.73 2.81 2.71 1.58 17 1.37

Number of zeros in dataset (Z=0) 13 17 21 12 114 17 4

p_0 0.4063 0.6800 0.4468 0.4800 0.7755 0.8947 0.3077

Binomial 90CI on p _0 0.2597,0.5665 0.4964,0.8297 0.3223,0.5766 0.3051,0.6586 0.7116,0.8309 0.7042,0.9810 0.1127,0.5726

Model selection
∆AIC(P) 129.3 13 16.4 10.6 83.5 0

∆AIC(G) 7.4 0.8 0 0 25.4 1.4

∆AIC(NB) 0 0 1.7 1 0 2.4

Akaike weight(P) 0 0 0 0 0 0.56

Akaike weight(G) 0.02 0.45 0.71 0.62 0 0.28

Akaike weight(NB) 0.98 0.55 0.29 0.37 1 0.17

P-W test p -value <1e-6 5e-6 1.2e-5 8.6e-6 <1e-6 0.17

90% Confidence intervals for k
Non-parametric bootstrap (uncorrected) 0.24, 0.63 0.13, 1.20 0.30, 1.91 0.29, 2.41 0.86, inf

1. Non-parametric bootstrap (bias-corrected) 0.26, 0.69 0.16, 1.76 0.34, 2.32 0.32, 3.57 1.48, inf

Number of all-zero bootstrap datasets 0 1 0 0 1192 0

Parametric bootstrap (uncorrected) 0.23, 0.71 0.13, 1.95 0.32, 2.28 0.30, 2.20 1.11, inf

2. Parametric bootstrap (bias-corrected) 0.26, 0.82 0.18, inf 0.40, 3.97 0.33, 3.57 1.91, inf

Number of all-zero bootstrap datasets 0 0 0 0 1397 0

3. Maximum-likelihood sampling variance 0.24, 0.83 0.16, 11.2 0.36, 3.32 0.32, 2.86 0.013,inf 1.28, inf

4. Large-sample variance on k_pz 0.27, 0.98 0.15, 10.5 0.44, 2.05 0.29, 2.70 0.32, 2.97 0.013,inf 0.76, inf

5. Binomial sampling variance on p _0 0.20, 0.88 0.08, 2.69 0.32, 2.15 0.18, 2.08 0.18, inf 0.003, 0.19 0.31, inf

Legend

Quantity cannot be calculated with available data

>5% of bootstrap datasets contained all zeros

Not shown in Table 1 due to broad CIs and atypical nature of outbreak. 



Control data analyses
    SARS, Singapore        SARS, Beijing Pneumonic plague, Mukden       Smallpox, Kuwait

Parameter estimation
Before

control

During

control

Before

control

During

control

Before

control

During

control

Before

control

During

control

N 57 114 33 43 12 27 4 23

mean (R_0 or R ) 1.63 0.68 0.94 0.28 2 0.41 2.75 0.91

k_mle 0.16 0.071 0.17 0.0062 2.63 0.32 2.64 0.026

k ,pz 0.17 0.074 0.17 0.0061 2 0.28 0.025

var(Z )/mean(Z ) 15.31 22.81 5.45 12 1.82 1.75 3 10.25

Number of zeros in dataset (Z=0) 38 96 24 42 3 21 0 21

p_0 0.6667 0.8421 0.7273 0.9767 0.2500 0.7778 0.0000 0.9130

Binomial 90CI on p _0 0.5503,0.7695 0.7749,0.8954 0.5724,0.8497 0.8944,0.9988 0.0719,0.5273 0.6079,0.8985 0,0.4377 0.7508,0.9843

Model selection
∆AIC(P) 250.4 318.1 49.2 74.7 0.8 3.8 0.8 79.9

∆AIC(G) 41.2 85.7 10.6 37.8 0 0 0 29.4

∆AIC(NB) 0 0 0 0 1.8 1.1 11.3 0

Akaike weight(P) 0 0 0 0 0.33 0.09 0.4 0

Akaike weight(G) 0 0 0 0 0.48 0.58 0.6 0

Akaike weight(NB) 1 1 1 1 0.2 0.34 0 1

P-W test p -value <1e-6 <1e-6 <1e-6 <1e-6 0.045 0.011 0.029 <1e-6

90% Confidence intervals for k
Non-parametric bootstrap (uncorrected) 0.10, 0.36 0.041, 0.28 0.08, 0.46 0.82, inf 0.11, 1.52 1.86, inf

1. Non-parametric bootstrap (bias-corrected) 0.11, 0.64 0.049, 0.41 0.10, 0.64 1.26, inf 0.12, 2.15 2.63, inf

Number of all-zero bootstrap datasets 0 0 0 3608 0 13 0 1219

Parametric bootstrap (uncorrected) 0.09, 0.28 0.042, 0.12 0.08, 0.49 0.86, inf 0.11, inf 0.60, inf

2. Parametric bootstrap (bias-corrected) 0.10, 0.30 0.046, 0.13 0.11, 0.78 1.47, inf 0.15, inf 2.96, inf

Number of all-zero bootstrap datasets 0 0 1 5612 0 6 3 1407

3. Maximum-likelihood sampling variance 0.10, 0.32 0.047, 0.15 0.10, 0.79 0.002, inf 0.97, inf 0.14, inf 0.76, inf 0.01, inf

4. Large-sample variance on k_pz 0.11, 0.36 0.049, 0.15 0.09, 0.80 0.002, inf 0.73, inf 0.12, inf 0.01, inf

5. Binomial sampling variance on p _0 0.09, 0.34 0.037, 0.15 0.06, 0.58 0.0002, 0.069 0.33, inf 0.05, inf 0.40, inf 0.003, 0.14

Legend

Quantity cannot be calculated with available data

>5% of bootstrap datasets contained all zeros

One-tailed 90% CI reported 
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Supplementary Data 

Superspreading and the impact of individual variation on disease emergence 

J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz 

 

NOTES ON OUTBREAK DATASETS 

SARS, Singapore 20031 

This dataset describes the progression of SARS in Singapore, beginning with the index 

case who imported the infection from Hong Kong.  The first case had onset of symptoms 

on Feb 25, 2003.  The government was notified of an unusual cluster of pneumonia cases 

on March 6, and again on March 14 for a cluster of six persons, including two healthcare 

workers (HCWs), with atypical pneumonia.  A case in the third generation had onset of 

symptoms on March 12, ten days before full control measures were instituted.  In the 

week of March 11, the serial interval (time from symptom onset of source case to 

symptom onset of secondary case) for SARS in Singapore had a median of 6 days 

(interquartile range, 4-9 days)2.  Centralized control measures were imposed on March 

22, and tightened successively on March 24 and April 9, so for our analysis we combined 

the first three generations of transmission into one dataset representing spread prior to 

control (N=57).  Transmission data from the fourth through seventh generations were 

pooled to create the dataset under control measures (N=114).  Control measures imposed 

during this period included use of isolation and full contact precautions with all identified 

SARS patients, twice-daily screening of HCWs for fever, limitation of hospital visitors, 

and later the shutdown of a vegetable market where a SSE that occurred after control had 

been initiated1.  In the total Singapore dataset including seven generations of transmission 
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and 201 probable SARS cases, 22 cases were not linked to the transmission chain due to 

translocation from other SARS-affected regions or poorly-defined contact history.   

Note that our maximum-likelihood estimate of R0 for the first three generations of 

SARS spread in Singapore (1.63; 90% CI (0.54,2.65)) is somewhat lower than other 

estimates for SARS in Singapore (3.1; 95% CI (2.3,4.0))3.  This may be because our 

dataset excludes unlinked cases, or because we include the period between the WHO’s 

global alert on SARS (March 12) and the imposition of centralized control measures 

(March 22), during which time transmission may have been reduced by informal changes 

of behavior or isolation of specific patients.  Analysis of a dataset including only the first 

two generations of transmission in Singapore (N=22) yields ˆ R 0,mle =2.55 (90% CI 

(0.50,4.50)) and ˆ k mle =0.21 (90% CI (0.15,∞)). 

 

SARS, Beijing 20034 

This dataset describes a hospital outbreak of SARS in the period before SARS was 

recognized in Beijing. The index case was an elderly woman hospitalized for diabetes, 

who caught SARS while a patient in the hospital, and directly infected 33 others.  These 

second-generation cases included patients and visitors, and transmission by the second 

generation occurred in the hospital (to patients and visitors), in homes, and in a 

workplace.  The hospital had not implemented isolation or quarantine procedures during 

the second generation’s infectious period.  Later in the outbreak administrative controls 

reduced contact rates, but infection control measures (masks, gloves, etc.) and respiratory 

isolation were never in place.  We regard the first and second generations of spread as a 

natural experiment in SARS nosocomial transmission.  To avoid concern of selection bias 
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(i.e. that this outbreak was traced and reported because it began with an extraordinary 

superspreading event), we have removed the index case (Z=33) from our main analysis, 

and used only the Z values from the second generation cases (N=33) to calculate the 

values in Table 1.  Analysis including the index case yields a higher estimate of R0 and 

more highly overdispersed distribution for ν ( ˆ R 0,mle =1.88, 90%CI (0.41,3.32); ˆ k mle =0.12, 

90%CI (0.078,0.42)), as expected given the addition of an extreme SSE.  The dataset 

under control was comprised of data from the third and fourth generations of cases 

(N=43), after the hospital’s imposition of limits on visitors and social contacts. 

 

Measles, US 1997-19995 

In this summary of measles elimination efforts in the United States, 165 separate chains 

of measles transmission were identified (of which 107 were classified as importations).  

122 outbreaks consisted of a single case with no secondary transmission (yielding an 

estimate of p0=122/165).  Insufficient data were reported to estimate the effective 

reproductive number R directly, but estimation of R was a major goal of the source paper 

so we used their estimate and 95% confidence interval.  These estimates of R were 

derived from three approaches, all based on the assumption that Z~Poisson(R).  Our 

analysis shows that the negative binomial offspring distribution is strongly favoured by 

AICc model selection, but it is not clear what impact this would have on estimation of R 

using the methods described.  We used the broadest confidence interval reported to 

account for this uncertainty.  Vaccination levels in the US are reported to be above 90% 

in school-aged children6, but are possibly lower in other populations. 
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Measles, Canada 1998-20017 

As for the US measles dataset, this is routine surveillance data tracking progress on 

elimination of measles from Canada. 49 outbreaks were reported, of which 35 had only 

one case.  Again we were unable to estimate R directly, and took estimates and 

confidence intervals (based on Z~Poisson(R)) from the source paper.  The vaccination 

level in the general population is reported to be 95-100%.  The authors raise the 

interesting point that long chains of transmission have occurred exclusively in religious 

communities that actively resist immunization, suggesting that an important determinant 

of the individual reproductive number ν in this context is the susceptibility of one’s 

contacts.  

 

Smallpox (Variola major), Europe 1958-19738, p. 1077 

This dataset is a summary of smallpox importations into Europe from 1958-1973, and 

thus combines data collected over a long time period in many countries, probably with 

varying degrees of smallpox vaccination.  Two outbreaks were excluded from the 

analysis, because one of them had three primary cases and the other had no primary case 

(infection was apparently transmitted on a carpet).  The remaining outbreaks each had a 

single index case, and the number of infections in the first indigenous generation (i.e. 

cases within Europe) was taken as the Z value for each index case.  Information on later 

generations is tabulated in the source material, but was excluded from this analysis 

because it was unclear if and when control was imposed in each outbreak, and there is no 

way to divide the total number of cases in the second indigenous generation among the 

possible source cases in the first indigenous generation.   
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Smallpox (Variola major), Benin 19679 

A village-based outbreak occurred in Benin (formerly Dahomey) in 1967.  The existence 

of the outbreak was concealed from authorities for three months, after which a 

vaccination team arrived but is suspected not to have affected the natural die-out of the 

outbreak.  Contact tracing was by recollection of the villagers and some links are 

uncertain.  Vaccination scar rates were <20% among children, and >70% among adults.  

Transmission was predominantly by intimate contacts within households, rather than via 

frequent casual contacts among villagers.  Limited control measures were imposed by the 

villagers, but were judged by the authors of the report to have had little effect on 

transmission so we have not divided the dataset. 

 

Smallpox (Variola major), West Pakistan 1968-197010 

This is surveillance data from 47 outbreaks in rural West Pakistan, focusing on 

transmission within compounds inhabited by extended families.  Of 47 outbreaks, 26 led 

to secondary transmission, with a total of 70 second-generation cases.  Since all 

compound residents were in reasonably close contact, generations of cases were assigned 

based on the interval between exposure to the index case and onset of illness; for second 

generation cases this interval was 9-21 days.  The population is reported to be relatively 

homogeneous.  There was no isolation of contacts from cases, and vaccination is reported 

to have “played a minor role”, though it was also observed that previously-vaccinated 

index cases tended to be less infectious.  Severe illness was associated with higher 

infectiousness in this study.  A similar study in East Pakistan in 1967 reported 30 
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smallpox outbreaks, with R~2.2 (stated verbally in the paper) and p0=13/30, yielding an 

estimate of ˆ k pz =0.4911. 

 

Smallpox (Variola major), Kuwait 196712 

In this outbreak, smallpox was suspected relatively quickly and control measures were 

imposed rapidly in the affected hospital.  One unrecognized case had been transferred to 

another hospital, however, and initiated further spread there before the disease was 

recognized and control was imposed.  The outbreak was stopped by this expanded control 

effort.  The background level of vaccination is not reported, but Kuwait had been free of 

endemic smallpox for a decade at the time of the outbreak.  Control measures included 

intensive surveillance of hospitals suspected to be infected, with vaccination of all 

patients.  Household contacts of infected individuals were vaccinated and placed under 

surveillance, and a mass vaccination campaign was initiated that covered 80% of the total 

population of Kuwait by the midway point of the outbreak (i.e. the date by which 

symptoms had appeared for roughly half of all cases). 

 

Smallpox (Variola minor), England 196613 

This outbreak of Variola minor, the less common and less severe form of smallpox, was 

initiated by a laboratory release in Birmingham, England.  Because smallpox had been 

eliminated from England for decades, the outbreak went unsuspected until a case in the 

fourth generation of transmission was diagnosed and control efforts were initiated.  

Thorough investigations were conducted by British and US experts, but the results seem 

to have been published only as an appendix to a parliamentary inquiry into a 1978 release 
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of smallpox from the same laboratory in Birmingham13.  The contact tracing dataset is 

quite complete, though there were several cases for whom a source of infection was not 

established.  We have excluded the latter from our analysis.  Vaccination levels in the 

general population were roughly 60%8, p. 1071. 

 

Monkeypox, Zaire 1980-198414,15  

From 1980-1984, intensive surveillance and epidemiologic investigations were carried 

out in Zaire to monitor the risk of monkeypox emergence into the niche left empty by the 

recent eradication of smallpox.  147 monkeypox cases were judged to be primary cases 

infected by an animal source.  These data are tabulated in several publications, with the  

greatest detail shown in Jezek et al14, who break down each outbreak by number of 

secondary cases per index case (Z) for each generation.  In our analysis, we used the data 

for the first generation of human-to-human transmission only, to minimize the influence 

of control measures.  Scars from smallpox vaccination (which is cross-protective for 

monkeypox) were seen on 68% of investigated contacts16, p. 99, but concern was expressed 

that vaccine protection may have been waning.  Occasional instances of subclinical 

infection were reported, raising the possibility that these transmission figures are an 

underestimate16. 

 

Pneumonic plague, 6 outbreaks 1907-199317 

Datasets from six outbreaks of pneumonic plague (Yersinia pestis) were compiled by 

Gani & Leach for their excellent recent analysis of the transmission and control of plague 

outbreaks.  They employ an approach similar to ours, comparing Poisson and geometric 
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models for the offspring distribution with aggregated data on Z (for all six datasets, 

before control measures), and conclude that the geometric distribution provides a superior 

fit.  (Note that our analysis, while including the more flexible negative binomial 

distribution as a candidate model, also selected the geometric model as the best 

combination of accuracy and parsimony in fitting the aggregated data (Table 1).)   

Because several of the source reports were published in inaccessible or foreign-language 

publications, we contacted Dr. Raymond Gani directly and he kindly provided the raw 

data from their analyses.  We based our analysis of pneumonic plague on these data, with 

further reference to the source report for the Mukden outbreak which we analysed more 

closely in our work on control measures18.  Mukden is a city in Manchuria, China, which 

experienced a pneumonic plague outbreak in 1946 with 12 cases before control measures 

and 27 cases after the advent of control.  Control measures included isolation and 

quarantine (in a suburban area) of all patients and contacts, disinfection and locking of 

infected houses, and wearing of masks required for all contacts and advised for the 

general population.   

 

Hantavirus (Andes virus), Argentina 199619 

This outbreak is the first reported instance of human-to-human transmission of a 

hantavirus, and is perhaps representative of a zoonotic pathogen beginning to adapt to a 

human host.  It is definitely an anomalous pattern for hantavirus, as human-to-human 

transmission has not been reported elsewhere despite intensive surveillance.  Contact 

tracing for this outbreak was imprecise, in part because several of the infected individuals 

had contact with more than one earlier case.  The dataset of Z values analysed was drawn 
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from a diagrammed transmission chain and text descriptions in the outbreak report.  In 

instances where the source of transmission was vague (i.e. transmission lines to two 

source cases in the published transmission chain), we adopted the conservative policy of 

dividing the secondary cases evenly between the possible sources in making our 

estimates of ˆ R 0,mle  and ˆ k mle .  The confidence intervals reported in Table 1 include the 

upper and lower bounds of 90% confidence intervals computed for all alternative 

assumptions regarding these vaguely attributed cases.  There is no mention of control 

measures in the outbreak report, possibly because human-to-human transmission was not 

thought to be a threat. 

 

Ebola Hemorrhagic Fever, Uganda 200020 

These data come from a traced portion of a large outbreak (425 presumptive cases) from 

Aug 2000 to Jan 2001.  The study methodology was retrospective contact tracing, with 

the stated goal of determining the original “primary” cases of the outbreak (i.e. those who 

had acquired infection directly from the zoonotic reservoir).  Cases (or their next of kin) 

were asked to identify persons from whom they had probably acquired the disease, who 

were in turn asked to identify who had infected them.  Primary cases were defined as 

those whose sources of infection could not be identified.  Prospective contact tracing was 

conducted to the extent that lists of contacts of identified cases (information that was 

“routinely collected”) were matched with a list of reported cases.  This data collection 

technique may bias the dataset toward surviving chains of transmission, since these are 

the ones that led to the later-generation cases from which contact tracing began.  The 

effort at prospective contact tracing would have mitigated this to some extent, but the 
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level of tracing effort was certainly lower than for the retrospective work.  The resulting 

dataset is conspicuously low in Z=0 entries, just as we would expect for a methodology 

that is biased against detecting chains that have died out.  Accordingly, we believe the 

results in Table 1 should be interpreted with caution, and have marked them as such. 

 

Rubella, Hawaii 197021  

In this outbreak, an army recruit returned to Hawaii from the US mainland for the 

Christmas holidays.  He imported rubella, and proceeded to infect “every identified 

susceptible contact he had during the 72-hour period of his prodromal illness”21.  His 

extreme infectiousness may have been linked to a persistent nonproductive cough linked 

to an earlier (separate) respiratory illness.  The great majority of secondary cases did not 

cause further transmission; there was only one other infection event reported in the 

outbreak.  Several cases were not epidemiologically linked to any source of transmission, 

and were omitted from the analysis.  This outbreak is almost certainly exceptional in the 

extreme infectiousness of the index case, and the small number of transmitting 

individuals (i.e. only two cases had Z > 0) prevented reliable estimation of model 

parameters.  As a consequence, we do not include results from this dataset in the main 

text, but show them in Supplementary Table 1 because of the interesting discussion 

surrounding this outbreak. 

The authors of the original report conclude that highly heterogeneous 

infectiousness is necessary to explain observed patterns of rubella epidemiology in 

Hawaii.  In particular, they posit that “During an uncomplicated rubella infection the 

average individual may have minimal contagious potential”, while “Other persons may 
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have a substantially greater potential for spread”.  Proposed factors influencing the 

potential for spread by individuals were age, sex, and coexisting or previous respiratory 

infections (the latter factor supported by unpublished evidence from military camps).  

“Spreader to spreader” contact is proposed to be necessary for sustained rubella 

transmission in a population, explaining why extended rubella outbreaks are most often 

observed in large, crowded population groups.  The authors conclude that the proposed 

individual variation in infectiousness, combined with the sparse population distribution of 

Hawaii in the 1960s, could explain “why the highly susceptible population of Hawaii can 

encounter dozens and perhaps hundreds of rubella introductions each year without 

resulting in a full-scale epidemic”.  This qualitative hypothesis is highly similar to the 

model-based conclusions reached in our study. 
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Survey of superspreading events (SSEs) 

To demonstrate the universality of the superspreading phenomenon, and to identify 

recurrent themes in field reports of superspreading events, we have compiled a list of 

superspreading events, their index cases, and the circumstances surrounding them.  This 

list is not intended to be comprehensive, but rather is a survey of the epidemiological 

literature on directly-transmitted infections.  This list was the basis for Figure 1d in the 

main text.  Also required for Figure 1d were estimates of reproductive numbers for the 

directly-transmitted diseases shown.  These were drawn from detailed studies where 

available, or else estimated from published ranges of values.  For some diseases, various 

levels of population immunity (due to previous natural spread or vaccination) may have 

been present for the different SSEs depicted; because these levels varied among settings 

and often were unknown, we adopted the most conservative approach of using estimates 

of basic reproductive numbers in Figure 1d.  R0 estimates and source references are as 

follows: monkeypox, R0=0.32 (Table 1); Ebola hemorrhagic fever, R0=1.8322; SARS, 

R0=323; smallpox, R0=5.524; rubella, R0~925; influenza, R0~1426; measles, R0~1625.  Note 

that estimates for rubella, influenza and measles were drawn from published ranges of 

values, and are intended to be illustrative only.
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Table S1.  Superspreading events in the published literature 

Disease Z Setting Patient Circumstances Ref. 

Ebola HF 46 Community ?M Active social life, including 

workplace contacts; 

possibility of spread by 

injection (re-used needles). 

27 

Ebola HF 28-

38+ 

Hospital 29M “Popular” doctor, with many 

visitors during hospitalization 

before death. 

28 

Ebola HF 21+ Funeral 45F Misdiagnosed, leading to 

traditional funeral with 

washing and handling of 

cadaver. 

28 

Influenza 38 Airplane 21F All infections occurred 

aboard grounded airplane 

with ventilation system 

turned off for three hours; 

severe cough. 

29 

Lassa fever 16 Hospital 25F Misdiagnosed; atypical 

presentation with severe 

cough. Possible airborne 

spread via air currents from 

bed to rest of ward. 

30 
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Measles 69 High school 16F Hacking cough; high school 

setting 

31 

Measles 84 High school 16M Hacking cough; high school 

setting 

31 

Measles 250 Dance party ?M First arrival of measles in 

Greenland—true virgin 

population. Index case 

attended crowded “dancing-

lik” party. 

32 

Mycoplasma 

pneumonia 

26 Fraternity 

banquet 

Unk.* “Gross bacchanal” fraternity 

banquet: inebriation, cigar 

smoke membrane irritation, 

vomiting, shouting; 

participants “drenched with 

food missiles, drinks and 

gastric contents”. 

33 

Pneumonic 

plague 

32 Funeral ?W Funeral attenders and visitors 

of an unrecognized case. 

34 

Rubella 18 Home and 

parties 

20M Previous (ongoing) 

respiratory illness with  

cough. 

21 
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Rubella 37+ Discotheque ?M Crowded discotheque; 

possible airborne spread via 

air flow from index case to 

crowd. Singing thought to aid 

aerosolization. 

35 

SARS 13 Hotel and 

hospital 

64M Undiagnosed: SARS not yet 

recognized. 

36 

SARS 20 Hospital 47M Undiagnosed: SARS not yet 

recognized. 

37 

SARS 187+ Apartment 

block 

26M Amoy Gardens outbreak. 

Hypothesis: unsealed 

plumbing and bathroom fans 

led to aerosolized virus, 

infecting many in apartment 

complex. 

38 

SARS 21 Hospital 22? Undiagnosed: SARS not yet 

recognized. 

1 

SARS 23 Hospital 27? Undiagnosed: SARS not yet 

recognized. Patient was  

HCW infected nosocomially. 

1 

SARS 23 Hospital 53? Patient infected 

nosocomially, co-morbidities. 

1 
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SARS 40+ Hospital 60? Misdiagnosed.  Patient 

infected nosocomially, co-

morbidities. 

1 

SARS 12 Vegetable 

market, 

hospital 

64? Misdiagnosed, with co-

morbidities. Patient 

transmitted with minimal 

contact (e.g. twice to taxi 

drivers). 

1 

SARS 44 ? ? Co-morbidities. 37 

SARS 137 Hospital 

worker 

43M Co-morbidities; ‘popular 

hospital laundry worker’, 

continued work despite 

symptoms 

37 

SARS 33 Hospital 62W Undiagnosed: SARS not yet 

recognized.  Patient infected 

nosocomially, with co-

morbidities.  High contact 

rate (many visitors) and no 

precautions in hospital. 

4 

SARS 10 Hospital 70W Undiagnosed: SARS not yet 

recognized.  Patient infected 

nosocomially, no precautions 

in hospital. 

4 
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SARS 8 Hospital 69W Undiagnosed: SARS not yet 

recognized.  Patient infected 

nosocomially, no precautions 

in hospital. 

4 

SARS 12 Construction 

site 

23M High number of contacts at 

home and worksite. 

4 

SARS 19 Home, 

hospital 

?M Misdiagnosed due to 

unknown contact history,  co-

morbidities. 

39 

SARS 24/2 Home, 

emergency 

room, ICU, 

hospital 

?M Unprotected exposure to 

index patient and wife of 

emergency personnel in 

ambulance, and of  patients 

and staff in emergency room. 

Intubation procedure infected 

HCWs despite protective 

equipment. 

39 

Smallpox 19 ? ? No details available. 8, 

p.1077 

Smallpox 11 Social 

contacts 

38M Undiagnosed: smallpox not 

suspected.  Visited with 

family and friends following 

travel abroad. 

8, 

p.1092 
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Smallpox 38 Hospital 

spread to 

HCWs and 

patients 

30M Undiagnosed: smallpox not 

suspected.  Noted as 

interesting case and shown to 

students and staff in hospital. 

8, 

p.1092 

Smallpox 16  ? Undiagnosed: mild ambulant 

case, not recognized as 

smallpox. 

8, 

p.1908 

Smallpox 17 Hospital  ? Airborne spread despite 

“rigorous isolation”; aided by 

severe bronchitis, low 

humidity, and strong air 

currents 

8, 

p.193 

Streptococcus 

group A (type 

46) 

10 Army barrack ?M Asymptomatic case, with  

strongly positive nose and 

throat cultures. 

40 

Streptococcus 

group A (type 1) 

100+ Hospital 

cafeteria   

?M Food handler with strongly 

positive nose culture and very 

high hand cultures; directly 

handled each piece of apple 

pie (popular item in 

cafeteria). 

40 
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Tuberculosis 40/2 Rock concert ? 2 index cases in rock band, 

infected “hundreds, if not 

thousands” of fans, at least 40 

active cases.  Airborne spread 

aided by singing. 

41 

Tuberculosis 56  9M Undiagnosed case, children 

not usually infectious with 

TB 

42 

 

Table notes 

Fractional entries in Z column denote more than one possible index case. 

Patient column shows age and sex of index case, when known. 

* index case not identified.  

HCW: healthcare worker 
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