ABSTRACT

The fauna of the Greater Antilles was extensively sampled and studied by P.J. Darlington, Jr., beginning with his early field trips there in 1934 and ending with his paper on tropical island carabids in 1970. The Lesser Antilles and Bahamas have had far less attention; most islands have not yet been sampled. The following tribes are recorded within the geographic area covered by the present study, which includes the Greater and Lesser Antilles, Bahamas, and most smaller islands not on the continental shelf: Carabini; Megacephalini; *Cicindelini; Enceladini; Pseudomorphini; Scaritini; *Clivinini; Ozaenini; Brachinini; *Rhysodini; Trechini; Pogonini; *Bembidiini; Morionini; *Pterostichini; Panagaeini; Callistini; Oodini; Licinini; *Harpalini; Ctenodactylini; Perigonini; Lachnophorini; Cyclosomini; Masoreini; Pentagonicini; Odacanthini; *Lebiini; *Zuphiini; Galeritini. The tribes whose names are marked with an asterisk each have more than a dozen species thus far recorded from the West Indies.

The tribes which occur in this area are also extensively distributed in the world, and are well represented in the Neotropical Region. In addition, a few African taxa or taxa whose ancestors came from Africa already have been discovered and possibly more will be found. Absence of arboreal Agrina, Eucheila and Inna, and the myrmecophilous Helluonini from the islands is notable. Since the fauna needs much study and new groups are likely to be discovered, a key to carabid adults of the entire Neotropical Region and adjacent areas is provided. Keys are provided to genera of all tribes known to occur on the West Indies and these genera are subsequently annotated. A complete checklist and bibliography are given which cover published accounts and some anecdotal information provided by those now engaged in revisions of the West Indian carabids.

SUMMARIO

La fauna de las Antillas Mayores ha sido estudiada y muestreada ampliamente por P.J. Darlington, Jr., desde sus primeros viajes de campo en 1934 hasta su última publicación sobre carárdidos en las islas tropicales en 1970. Las Antillas Menores y las Bahamas no han sido mayormente tomadas en cuenta, por que gran parte de las islas no han sido aún muestreadas. Las siguientes tribus están registradas dentro del área geográfica cubierta por éste estudio, que incluye las Antillas Mayores y Menores, las Bahamas y la mayor parte de las pequeñas islas océnicas: Carabini; Megacephalini; *Cicindelini; Enceladini; Pseudomorphini; Scaritini; *Clivinini; Ozaenini; Brachinini; *Rhysodini; Trechini; Pogonini; *Bembidiini; Morionini; *Pterostichini; Panagaeini; Callistini; Oodini; Licinini; *Harpalini;
Las tribus que aparecen en esta área también están ampliamente distribuidas en el mundo y muy bien representadas en la región Neotropical. Además, alguna taxa Africana o taxa cuyos ancestros vienen de África han sido ya descubiertos y posiblemente más serán hallados en el futuro. La ausencia de Agrina, Eucheila e Inna arbóreos y de myrmecophilous Helluonini en las islas es resaltante. Ya que la fauna necesita más estudios y que nuevos grupos probablemente serán descubiertos, se suministra una tabla dicotómica para carávidos adultos en toda la región neotropical y áreas adyacentes. También se proporcionan otras tablas para los géneros de todas las tribus que se conocen en las Indias Occidentales y que han sido posteriormente anotados. Se incluye además un listado, una bibliografía y algunas referencias anecdóticas e informes publicados que han sido proporcionados por aquellos actualmente ocupados en las revisiones de los carabidos de las Indias Occidentales.

Table of Contents

Introduction .. 352
Classification and Tribes of Terrestrial Caraboidea .. 354
Key to Tribes and Some Genera of Neotropical Carabidae 357
Subfamily Carabinae ... 364
Subfamily Scaritinae ... 368
Subfamily Paussinae ... 373
Subfamily Psydrinae ... 376
Subfamily Harpalinae .. 381
Acknowledgements ... 399
Literature Cited ... 400
Appendix A: Checklist of the Species of the West Indies 422
Appendix B: Current Revisors of West Indian Genera 448
Index to Names of Taxa .. 451

INTRODUCTION

The fauna of the Greater Antilles was extensively sampled and studied by Darlington (1934, 1935a and b, 1937a and b, 1939, 1941, 1947, 1953, and 1970) although many of the higher mountains remain untouched by carabid collectors. The Lesser Antilles and Bahamas have had far less attention; most islands have not yet been adequately sampled and some not even visited. The following 29 tribes are recorded within the geographic area covered by the study, which includes the Greater and Lesser Antilles, Bahamas, and most smaller islands not on the continental shelf (see Fig. 1): Carabini; Megacephalini; *Cicindelini; Enceladini; Pseudomorphini; Scaritini; *Cicinini; Ozaenini; Brachinini; *Rhysodini; Trechini; Pogonini; *Bembidini; Morionini; *Pterostichini; Panagaecini; Callistini; Oodini; Licinini; *Harpalini; Ctenodactylini; Perigonini; Lachnorphorini; Cyclosomini; Masoreini; Pentagoniciini; Odacanthini; *Lebiini; *Zuphiini; Galeritini. The tribes whose names are marked with an asterisk each have more than a dozen species thus far recorded from the West Indies.

The tribes which occur in this area are also extensively distributed in the world, and are well represented in the Neotropical Region. In addition, a few African lineages already have been discovered and possibly more will be found. Absence of arboreal Agrina, Eucheila and Inna, other arboreal lebiines, and the myrmecophilous Helluonini from the islands is notable.

The purpose of the present paper is to provide a foundation, that is keys, up-to-date checklist, and bibliography for those engaged in generic revisions of the West Indies fauna.
Geographic area covered by this paper and the West Indies Carabid Beetle Project; includes all the Greater and Lesser Antilles, Bahamas, and most smaller islands of the Caribbean not on the continental shelf.

Quaest. Ent., 1984, 20 (4)
These combined revisions will then provide the basis for a handbook of the fauna that will be dedicated to Philip J. Darlington Jr., who in 1934, stated that someday he wished to revise the West Indian carabid fauna when enough material became available. We hope that the present literature condensation will result in enhancing existing collections of West Indian ground beetles and that these will find their way to the generic revisors listed in Appendix B.

Since the fauna needs much study and new groups are likely to be discovered, a key to carabid adults of the entire Neotropical Region and adjacent areas is provided. Keys are provided to genera of all tribes known to occur on the West Indies and these genera are subsequently annotated. A complete checklist and bibliography are given which cover all published accounts and we provide some anecdotal information provided by those now engaged in revisions of the West Indian carabids. The classification of terrestrial Caraboidea provided herein is based on that given by Erwin (1984). Keys and generic annotations benefited greatly from Reichardt (1977).

CLASSIFICATION AND TRIBES OF TERRESTRIAL CARABOIDEA
Names in bold face are those of tribes represented in the West Indies

SUPERFAMILY CARABOIDEA

I. Family Trachypachidae
 01. Tribe Trachypachini
 02. Tribe Systolosomini

II. Family Carabidae
 Division Nebriiformes
 A. Subfamily Carabinae
 a. Supertribe Nebriitae
 01. Tribe Nebriini
 02. Tribe Notiokasini
 03. Tribe Opisthiini
 04. Tribe Cicindisini
 05. Tribe Notiophilini
 b. Supertribe Loriceritae
 06. Tribe Loricerini
 c. Supertribe Carabitaec
 07. Tribe Carabini
 08. Tribe Ceroglossini
 09. Tribe Pamborini
 10. Tribe Cychrini
 d. Supertribe Cicindelitae
 11. Tribe Collyrini
 12. Tribe Megacephalini
 13. Tribe Ctenostomatini
 14. Tribe Mantichorini
 15. Tribe Cicindelini
 e. Supertribe Omophronitae
 16. Tribe Omophronini
Division Loxomeriformes
 B. Subfamily Scaritinae
 f. Supertribe Migadopitae
 17. Tribe Amarotypini
 18. Tribe Migadopini
 g. Supertribe Elaphritae
 19. Tribe Elaphrini
 h. Supertribe Promecognathitae
 20. Tribe Promecognathini
 i. Supertribe Siagonitae
 21. Tribe Enceladini
 22. Tribe Siagonini
 j. Supertribe Hiletitae
 23. Tribe Hiletini
 k. Supertribe Pseudomorphitae
 24. Tribe Pseudomorphini
 l. Supertribe Scarititae
 25. Tribe Cnemacanthini
 26. Tribe Scaritini
 27. Tribe Clivinini
 C. Subfamily Paussinae
 m. Supertribe Metriitae
 28. Tribe Metriini
 n. Supertribe Paussitae
 29. Tribe Nototylini
 30. Tribe Mystropomini
 31. Tribe Ozaenini
 32. Tribe Protopaussini
 33. Tribe Paussini
 o. Supertribe Brachinitae
 34. Tribe Crepidogastrini
 35. Tribe Brachinini

Division Melaneiformes
 D. Subfamily Broscinae
 p. Supertribe Melaenitae
 36. Tribe Melaenini
 37. Tribe Cymbionotini
 q. Supertribe Broscitae
 38. Tribe Broscini
 r. Supertribe Apotomitae
 39. Tribe Apotomini

Division Psydriformes
 E. Subfamily Psydrinae
 s. Supertribe Psydritae
 40. Tribe Gehringiini
 41. Tribe Psydrini

Quaest. Ent., 1984, 20 (4)
42. Tribe Melisoderini
43. Tribe Tropidopterini
44. Tribe Meonidini
45. Tribe Patrobini
46. Tribe Amblytelini
 t. Supertribe Rhysoditae
 47. Tribe Rhysodini
 u. Supertribe Trechitae
 48. Tribe Trechini
 49. Tribe Zolini
 50. Tribe Pogonini
 51. Tribe Bembidiini
F. Subfamily Harpalinae
 v. Supertribe Pterostichitae
 52. Tribe Morionini
 53. Tribe Pterostichini
 54. Tribe Zabrinini
 w. Supertribe Panagaeitae
 55. Tribe Bascananini
 56. Tribe Panagaeini
 57. Tribe Agonicini
 58. Tribe Disphaericini
 59. Tribe Peleciini
 x. Supertribe Callistitae
 60. Tribe Cuneipectini
 61. Tribe Callistini
 62. Tribe Chaetogenyini
 63. Tribe Oodini
 64. Tribe Licinini
 y. Supertribe Harpalitae
 65. Tribe Harpalini
 z. Supertribe Dryptitae
 66. Tribe Dryptini
 67. Tribe Zuphiini
 68. Tribe Galeritini
 a'. Supertribe Anthiitae
 69. Tribe Helluonini
 70. Tribe Anthiini
 71. Tribe Helluodini
 b'. Supertribe Orthogoniitae
 72. Tribe Idiomorphini
 73. Tribe Amorphomerini
 74. Tribe Orthogoniini
 75. Tribe Catapiesini
 c'. Supertribe Ctenodactylitae
 76. Tribe Hexagoniini
77. Tribe Ctenodactylini
78. Tribe Calophaeini
d'. Supertribe Lebiitae
79. Tribe Perigonini
80. Tribe Lachnophorini
81. Tribe Graphipterini
82. Tribe Cyclosomini
83. Tribe Masoreini
84. Tribe Pentagonicini
85. Tribe Odacanthini
86. Tribe Lebiini

Key to Tribes and Some Genera of Neotropical Carabidae

 OMOPHRONINI, Omophron Latreille, p. 367
1'. Scutellum visible. Intercoxal process of prosternum not enlarged. Shape of body various.
 PSEUDOMORPHINI, Pseudomorpha Kirby, p. 369
2. (1') Scape of antenna not evident from dorsal aspect. Head with short, deep antennal sulcus ventrally between eyes and mouthparts. Labium without suture between submentum and mentum.
 PSEUDOMORPHINI, Pseudomorpha Kirby, p. 369
2'. Antenna with scape visible from above. Head with or without short deep antennal sulcus
 BRACHININI, p. 375
3. (2') Abdomen with seven or eight sterna normally exposed. Mandible with at least one setigerous puncture in scrobe. Head with one pair of supraorbital setigerous punctures.
 CICINDELITAE
3'. Abdomen with six sterna normally exposed.
 CICINDELITAE
4. (3') Clypeus broader than distance between sockets of antennae.
 CTENOSTOMATINI, Ctenostoma Klug
4'. Clypeus narrower than distance between antennal sockets.
 CTENOSTOMATINI, Ctenostoma Klug
 CTENOSTOMATINI, Ctenostoma Klug
5'. Metepisternum plate-shaped, not entirely sulcate. Mesepisternum elongate. Lacinia with articulated tooth
 CTENOSTOMATINI, Ctenostoma Klug
6. (5') Anterior angles of pronotum more advanced than anterior margin of prosternum. Anterior sulcus of pronotum separated or not from anterior sulcus of prosternum (as well as from proterial-episternal sulcus). True

1 Modified from G.E. Ball in, Reichardt 1977.
2 Other genera of the West Indies treated below under tribal discussions; not all Neotropical genera mentioned by name.
ornamental pubescence absent. Terminal palpomere of maxillary palpus shorter or not than penultimate palpomere ... MEGACEPHALINI, p. 366

6' Anterior angles of pronotum not more advanced than anterior margin of prosternum. Anterior sulcus continuous from pronotum to prosternum. True ornamental pubescence present in members of most taxa. Terminal palpomere of maxillary palpus longer than penultimate palpomere in members of most taxa ... CICINDELINI, p. 366

7 (4') Metasternum without antecoxal suture, almost as long as combined length of abdominal sterna. Front tibia without apical spur (but with pair of prominent apical spines). Antenna moniliform. Head and pronotum deeply grooved .. RHYSODINI, p. 376

7' Metasternum with antecoxal suture, and shorter in length. Front tibia with apical spur .. 8

8 (7') Front tibia with two spurs terminal and ventral, independent of antenna cleaner (latter present or absent) .. 9

8' Front tibia with one spur apical, one displaced distally, toward antenna cleaner .. 13

9 (8) Tarsal claws unequal, anterior longer and stronger than posterior. Hind coxae contiguous. Elytron with base marginate to scutellum. Scutellar interneur short CICINDISINI, Cicindes Bruch

9' Tarsal claws equal. Hind coxae separate. Base of elytron not marginate, or marginate only to lateral constriction .. 10

10 (9) Hind coxa extended laterally to elytral epipleuron TRACHYPACHIDAE, SYSTOLOSOMINI, Systolosoma Solier

10' Hind coxa normal, not in contact laterally with elytral epipleuron 11

11 (10) Elytron without subapical fold at outer edge. Anterior tibia simple, without longitudinal sulcus or antenna cleaner ... NOTOTYLINI, Nototylus Schaum

11' Elytron with subapical fold at outer edge. Anterior tibia with antenna cleaner .. PAUSSITAE, 12

12 (1') Antenna of 11 clearly visible antennomeres, antennomere 2 distinct, slightly shorter than 3, antennomeres 3 - 11 free, clearly separated and articulated. Anterior coxae not much projected, separated from each other by normal process OZAENINI, p. 374

12' Antenna of 10 clearly visible antennomeres, antennomere 2 markedly reduced, indistinct. Anterior coxae prominent, contiguous, separated at base, or not, by narrow process PAUSSINI

13 (8') Anterior coxal cavities open posteriorly .. 14

13' Anterior coxal cavities closed posteriorly ... 17

14 (13) Head with two pairs of supraorbital setigerous punctures. Scape of antenna as long as antennomeres 2 - 6 together. Head with short, deep sulcus beneath, between eye and gular region. Mandibles spoon-shaped, each with several teeth HILETINI, Eucamaragnathus Jeannel

14' Head with single pair of supraorbital setigerous punctures. Scape of antenna normal, less in length than length of antennomeres 2 - 6 together.
Mandibles average

15 (14') Frons with series of longitudinal costae. Middle coxal cavities conjunct (entirely enclosed by sterna). Head very broad. Eyes large. Body flat. Size small, length less than 7.0 mm... NOTIOPHILINI, Notiophilus Duméry

15' Frons without series of parallel carinae. Middle coxal cavities disjunct (not entirely enclosed by sterna). Size large, length greater than 10.0 mm

16 (15') Head very narrow (less than half as wide as pronotum at apex). Mandibles elongate, each with two sharp teeth near apex. Labrum long, deeply notched, bilobed... CYCHRINI, Scaphinotus Latreille

16' Head average. Mandibles of normal length, without large teeth near apex. Labrum of normal proportions, apical margin sinuate, but not deeply notched... CARABINI, p. 365

17 (13') Middle coxal cavities disjunct (not entirely enclosed by sterna)

17' Middle coxal cavities conjunct (entirely enclosed by sterna)

18 (17) Antennomeres 2-6 with markedly large setae; antennomeres 2-4 irregular in shape. Head with two large foveae and deep transverse sulcus behind eyes. Elytron with 12 regular striae... LORICERINI, Loricera Latreille

18' Antennomeres 2-6 without markedly elongate setae. Combination of other characters not as above

19 (18') Anterior tibia with both spurs nearly apical. Antenna cleaner, sulcate, confined to posterior surface of tibia, not visible from anterior surface. Body pedunculate... ENCELADINI, p. 368

19' Anterior tibia with one spur markedly preapical, above groove of antenna cleaner, latter in form of notch in antero-lateral surface, visible anteriorly. Body pedunculate or not. Size various

20 (19') Elytron with scutellar stria short (or absent). Body pedunculate... SCARITITAE, p. 369

20' Elytron with scutellar stria extended to apex, parallel to elytral suture. Body not pedunculate (in form nebrioid, amaroid, pterostichoid, elongate or ovoid) MIGADOPINI

21 (17') Scrobe of mandible with one or more setigerous punctures

21' Mandibular scrobe asetose

22 (21) Head with single pair of supraorbital setigerous punctures

22' Head with more than one pair of supraorbital setae

23 (22) Body pubescent. Size small, length of body less than 6.0 mm. Color rufous... APOTOMINI, Apotomus Illiger

23' Body glabrous except for usual fixed setae. Length more than 10.0 mm. Color various, black, coppery, green, but not rufous

24 (22') Head with three or more pairs of supraorbital setigerous punctures. Dorsal surfaces of posterior tarsomeres glabrous. Size larger, length of body more than 10.00 mm BROSCINI (in part)

24' Head with two pairs of supraorbital setae. Dorsal surfaces of posterior tarsomeres each with two or more setae. Size various

25 (24') Penultimate maxillary palpomere pubescent. Frontal grooves more widely
360 Erwin and Sims

separated at middle than at anterior part, and terminated before posterior margins of eyes. Anophthalmous specimens with penultimate maxillary palpomere tumid. 26

25' Penultimate maxillary palpomere glabrous. 28

26 (25) Terminal maxillary palpomere much shorter and more slender than penultimate palpomere. Elytron with base margined. Tarsomeres with dorsal surfaces sulcate longitudinally, or not BEMBIDIINI, p. 377

26' Terminal maxillary palpomere normal 27

27 (26) Elytron with plica posterior to epipleuron. Article 2 of antenna pubescent. Base of elytron margined or not. Each tarsomere with dorsal surface grooved longitudinally or not ZOLINI

27' Elytron with internal fold (=plica) not interrupting lateral margin. Antennomere 2 with tuft of setae, only. Base of elytron margined. Dorsal surface of each tarsomere smooth, without longitudinal groove POGONINI, p. 377

28 (25) Elytron without internal plica behind epipleuron. Frontal grooves curved: at middle, distance between eye and adjacent groove subequal to distance between grooves, then expanded to genae and ventral side. Glossal sclerite ("ligula") with six or more setae. Male with front tarsomeres 1 - 2 expanded and with tooth apically at inner side TRECHINI, p. 377

28' Elytron with internal plica. Frontal grooves at middle more distant from each other than from eyes; grooves not extended behind eyes. Glossal sclerite with two or three setae. Three or four basal front tarsomeres of male slightly and symmetrically expanded and rounded to apex (or simple) PSYDRINI

29 (21) Terminal maxillary palpomere articulated obliquely with penultimate palpomere. Integument markedly punctate. Head and pronotum either with pubescence thick and long, or completely glabrous, and surface brilliant, metallic. Elytron with well developed plica PANAGAEINI, p. 385

29' Terminal and penultimate maxillary palpomeres articulated in straight line, at apex of penultimate palpomere. Integument punctate or not, setose or not. Elytron with or without plica .. 30

30 (29') Head with more than two pairs of supraorbital setigerous punctures. Lateral edge of pronotum with several setae. Anterior tibia extended latero-apically as prominent, thick tooth-like projection CNEMACANTHINI, Cnemalobus Guerin-Ménèville

30' Head without, or with one or two pairs of supraorbital setigerous punctures. Number of pronotal setae various. Form of front tibia various 31

31 (30') Antennomeres 3-10 each with apical ring of long setae, each seta longer than antennal scape. Labrum elongate, anterior margin projected as broadly rounded lobe. Mentum and submentum fused, mental suture not evident; mentum-submentum bilobed posteriorly, each lobe with three or more long setae. Penultimate labial palpomere long, with numerous setae. Glossal sclerite slender, projected well beyond apices of paraglossae, with four or more apical setae
CHAETOGENYINI, Camptotoma Reiche

31' Antennomeres 3-10 with apical setae shorter than scape. Combination of characters other than as above 32.

32 (30') Head without or with one pair of supraorbital setigerous punctures 33

32' Head with two pairs of supraorbital setigerous punctures 40

33 (32) Elytron with apical margin truncate. Body glabrous and shining, depressed. Head without or with one pair of supraorbital setigerous punctures. Pronotum without, or with one pair of setigerous punctures at posterior angles CATAPIESINI

33' Elytron with apical margin not truncate. Body various. Head with one pair of supraorbital setigerous punctures. Pronotum with one or two pairs of setigerous punctures 34

34 (33') Elytron without internal plica near apex 35

34' Elytron with internal plica 38

35 (34) Antennomere 3 with few setae only, not pubescent, antennomere 4 pubescent in apical 0.33 36

35' Antennomere 3 pubescent in apical 0.33, antennomere 3 pubescent throughout 37

36' Body average, elytra normal. Striae of elytra average. Mouthparts not as above PTEROSTICHINI, Agonina (part), p. 383

37 (35') Terminal maxillary palpomere elongate, more than twice length of penultimate palpomere. Terminal labial palpomere glabrous, not elongate. Antennomeres of flagellum quadrate PTEROSTICHINI, Cratocerus Dejean

37' Terminal maxillary and labial palpomeres similar in size and proportions. Antennomeres of flagellum slender, elongate, antenna filiform HARPALINI, p. 388

38 (34') Surface of elytra and pronotum finely and densely punctate, with fine pubescence. Scutellar interneur normal CALLISTINI, p. 386

38' Dorsal surface not densely punctate, without fine pubescence. Scutellar interneur short or absent 39

39 (38') Elytron with interval 9 almost absent; interneur 8 in form of deep, rugose groove, especially from middle onward; scutellar interneur short; epipleuron gradually tapered to apex. Terminal palpomere (maxillary or labial) normal OODINI, p. 386

39' Elytron with interval 9 normal, wider or narrower; interneur 8 normal, similar to others; scutellar interneur absent, epipleuron expanded near mesothoracic region, then tapered gradually posteriorly PELECIINI, Pelecius Kirby

40 (32') Antennomeres 5 - 10 submoniliform, short or slightly depressed. Margin of pronotum with approximately seven pairs of setae. Interneur 8 in form of zigzag sulcus, with numerous scattered setigerous punctures. Body

Quaest. Ent., 1984, 20 (4)
subpedunculate. Legs flattened. MORIONINI, p. 381

40’ Antennomeres 5 - 10 slender, antenna distinctly filiform; or submoniliform
and pronotum with single pair of lateral setae; and/or other character
states different from above. 41

41 (40’) Elytron with internal plica. ZABRINI, Amara Bonelli

41’ Elytron without internal plica. 42

42 (41) Penultimate labial palpmere plurisetose. PTEROSTICHINI (part), p. 382

42’ Penultimate labial palpmere bisetose. 43

43 (41’) Pronotum narrow, distinctly longer than wide, at apex as wide as posterior
part of head. 44

43’ Pronotum not distinctly longer than wide, and/or wider at apex than
posterior part of head. 47

44 (43) Terminal maxillary and/or labial palpmere trianguloid. Tarsomere 4
notched, bilobed. LEBIINI, Agra Fabricius

44’ Terminal maxillary and labial palpmeres cylindrical, normal. Tarsomere
4 bilobed or entire. 46

45 (44) Terminal labial palpmere trianguloid. Antenna with scape and
antennomere 3 of about same length. Tarsal claws pectinate

45’ Terminal maxillary and labial palpmeres trianguloid. Scape of antenna
very large, longer than antennomere 3. Tarsal claws smooth.

46 (44’) Tarsomere 4 deeply notched at apex, bilobed, lobes more than 0.5 length of
tarsomere 5. Elytra entire, abdominal terga completely covered

46’ Tarsomere 4 simple or only slightly emarginate apically. Elytron with apex
trianguloid. Antenna with scape and
antennomere 3 of about same length. Tarsal claws pectinate

47 (43’) Posterior tibia with inner spur more than 0.5 length of hind basitarsus inner
spur longer than outer spur. Tarsal claws pectinate or not

47’ Posterior tibia with spurs more or less equal and shorter than 0.5 length of
hind basitarsus. 50

48 (47) Labrum elongate, length more than 0.5 width at base. Head markedly
constricted posteriorly, in form of neck. Pronotum widest at base, narrowed
anteriorly. LEBIINI, Nemotarsus LeConte

48’ Labrum average, length less than 0.5 width at base. Head not constricted
posteriorly in form of neck. Pronotum either widest anteriorly, with sides
slightly sinuate before base, or base and apex about equal, and sides
rounded. CYCLOSOMINI, p. 394

49 (48’) Pronotum with sides sinuate posteriorly. Dorsum of elytra variegated, or
predominantly dark with pale spots. Spurs of middle and hind tibia with
serrate margins, each tibia with spines of average length. Each mandible
with dorsal and ventral margins basally projected laterally about equally.
Antenna with each of flagellomeres 5-10 about twice as long as wide

49’ Pronotum with sides rounded or nearly straight, not sinuate. Dorsum of
elytra uniformly rufous, rufo-piceous, or piceous, same color as head and pronotum. Spurs of middle and hind tibia with margins smooth. Each mandible basally with dorsal margin extended laterally as broad, shelf-like projection. Flagellomeres 5-10 each not more than 1.25 times as long as wide .. MASOREINI, p. 394

50 (47') Labrum appearing elongate (actually about quadrate). Head with one pair of setae ventrally, posterior to submentum. Elytron with penultimate umbilicate seta nearer margin than those adjacent LEBIINI, Pericalina, p. 397

50' Labrum transverse, distinctly wider than long. Head without or with one pair of setae ventrally, posterior to submentum. Elytron with penultimate umbilicate seta in various positions ... 51

51 (50') Elytron with apical margin truncate ... 52
51' Elytron with apical margin entire, sinuate or not 58.

52 (51) Tarsal claws pectinate .. LEBIINI (part), p. 395
52' Tarsal claws with inner margins smooth, not pectinate 53.

53 (52) Dorsal surface glabrous, except for normal fixed setae. Antennomeres 1-3 glabrous, except one long seta on scape, and ring of setae near apex of antennomeres 2 and 3 .. 54

53' Dorsal surface finely pubescent. Antennomeres 1-3 pubescent 56

54 (53) Labial palpomere 3 acuminate apically. Elytron with dorsal surface markedly iridescent. Legs flavous .. LACHNOPHORINI, Eucerus LeConte, p. 394
54' Labial palpomere 3 subtruncate to truncate apically, not acuminate. Elytron with dorsal surface iridescent or not. Legs flavous or darker 55

55 (54) Pronotum approximately pentagonal in shape, with sides sharply constricted posteriorly. Head markedly constricted posteriorly. Mentum and submentum fused, mental suture not evident .. PENTAGONICINI, Pentagonica Schmidt-Goebel, 55' Pronotum with sides not markedly constricted posteriorly. Head markedly constricted or not posteriorly. Mentum and submentum fused or separated by distinct suture .. LEBIINI (part), p. 395

56 (53) Size small, length of body about 6.0 mm., or less. Scape of antenna longer than combined length of antennomeres 2 plus 3 ZUPHIINI, p. 390
56' Size larger, length of body 10.0 mm. or more. Antennal scape shorter or longer than combined length of antennomeres 2 plus 3 57

57 (56') Antennomeres 5-11 more or less flattened, finely pubescent, central area each side generally triangular and more or less glabrous HELLUONINI
57' Antennomeres 5-11 not flattened, uniformy pubescent GALERITINI, p. 391

58 (51') Clypeus sloped downward, surface more or less concave, emarginate anteriorly. Labrum deeply notched .. LICININI, p. 387
58' Clypeus plane, not sloped, anterior margin straight or slightly emarginate. Labrum with anterior margin truncate or slightly concave 59

59 (58') Elytron with interneur 8 impressed and obliquely extended almost to apical
sutural angle. Posterior trochanter almost 0.5 length of posterior femur

PERIGONINI, p. 393

59' Interneur 8 normal. Length of posterior trochanter various

60 (59') Dorsal surface glabrous, except for some scattered setae

60' Dorsal surface more or less pubescent

61 (60') Elytron with odd-numbered intervals setose

PTEROSTICHINI, Agonina (part), p. 383

61' All elytral intervals setose

62 (61') Elytral interneurs more deeply impressed on anterior half; and-or anterior half of interneurs coarsely punctate and poster half finely punctate or impunctate. Setae erect and at least a few longer, as on scape

LACHNOPHORINI (part), p. 393

62' Elytron with interneurs equally punctate, impressed or not. Body with short, dense and decumbent, pubescence

PTEROSTICHINI, Agonina (part), p. 383

A. SUBFAMILY CARABINAE

Van Emden (1942), following older authors, accepted the traditional division of Carabidae into the Carabinae and Harpalinae, and within the latter studied and redefined the tribes with a seta in the mandibular scrobe ("Harpalinae Piliferae", as opposed to the "Harpalinae Impilae", with glabrous mandible). In his characteristically thorough study, van Emden defined the taxonomic position of several inadequately known genera. Crowson (1955:5,6) who also distinguishes these two groups, and gives subfamilial rank to a third, the Scaritinae, considers the Brachinini, normally placed as a distinct subfamily, in Harpalinae; he does not mention the pseudomorphines.

Lindroth (1961:13; 1969b:xii) fused the classically accepted subfamilies Carabinae and Harpalinae. Lindroth (1969b:xxii-xxi) justified his action well enough, and there is no need to go into details here. However, it should be mentioned that, in a general way, the Carabinae correspond to the "Caraboidea Simplicia", and the Harpalinae to the "Caraboidea Limbata" of Jeannel's system (1941, 1942a) which was followed by Ball (1960:91-92).

Herein only those anisochaetes with glabrous, styliform parameres or a derivation of such a paramere are considered Carabinae. In some groups, like the Carabini, the distance between the two spurs is very small, thus the Carabinae excludes most tribes of Carabidae. Based on a system proposed by Kryzhanovsky (1976) and Erwin (1979, 1984, 1985) and several new ideas presently under discussion by carabidologists, a provisional classification into Divisions, Subfamilies, Supertribes, and Tribes is used here.

The Nebriiformes include phylogenetically some groups of water beetles, but we have followed tradition and not covered those groups here (see Erwin, 1985), restricting our comments to only the Subfamily Carabinae.

SUPERTRIBE CARABITAE

This subtribe presently contains four tribes, only one of which is found in the West Indies.
TRIBE CARABINI

In South America, carabines are included in two genera, *Calosoma* Weber and *Ceroglossus* Solier, each with few species. In temperate regions of the Northern Hemisphere, the tribe is represented by many species, most of which are included in *Calosoma sensu lato*, and *Carabus* Linne. Adults of most species are large, and many are elegant in form and color. This elegance has attracted the attention of unskilled commercially oriented amateurs who have caused substantial confusion at generic, specific and subspecific levels by "playing" with the taxonomy, often for their own profit.

Lapouge (1929b-1931) recognized five subtribes: Ceroglossina, Aplothoracina (a monobasic subtribe for an endemic genus of Saint Hélène [see Basilewsky, 1972]), Calosomina, Carabina, and Cychrina. The last-named group is generally ranked now as a tribe.

Larvae of both Neotropical genera are known (van Emden, 1942:22-23).

Key to Genera of West Indian Carabini

1. Antennomeres 2 and 3 carinate. Mandibles at least basally with transverse ridges. Labrum black. Elytra with humeri well developed (hind wings normally developed), or sloped (hind wings reduced) *Calosoma* Weber, p. 365

1'. Antennomeres 2 and 3 cylindrical, not carinate. Mandibles smooth, or finely punctate. Labrum black or metallic. Elytra with humeri sloped (hind wings reduced) *Carabus* Linne, p. 365

Calosoma Weber, 1801. A genus worldwide in distribution, with many named species, subspecies, varieties, and aberrations. The genus has been the subject of two important world revisions: Breuning (1927-1928b) and Jeannel (1940). The Nearctic and Neotropical species were treated also by Gidaspow (1959, 1963). The genus was handled very differently by these authors, thus a universally accepted system has not been adopted. Breuning recognized 20 subgenera; Jeannel recognized 20 genera. Gidaspow recognized a single genus, with the Neotropical species arrayed in five subgenera.

Lindroth (1961:42 and following), in his study of the Canadian fauna, eliminated the subgenera of *Calosoma*, recognizing informal taxa designated as "species groups". In part, these coincide with the subgenera of previous authors.

Larvae and adults of *Calosoma* are predators of lepidopterous larvae. According to Lindroth (1961:44), most adults are strong fliers, coming from great distances at the time of mass eclosion of caterpillars. Two species have been recorded from the West Indies.

Carabus Linne, 1758. This is a Holarctic genus, with maximum divergence and richness in eastern Asia. It is represented in mesic mountain forests of México by two species whose adults are brachypterous: *C. forreri* Bates, confined to the Sierra Madre Occidental and the Chiricahua Mountains of southeastern Arizona, and *C. hendrichsi* Bolivar, Rotger and Coronado, confined to several peaks in the Sierra Madre Oriental. *Carabus basilicus* Chevrolat of Puerto Rico, the only *Carabus* listed for the islands, is a doubtful record and needs confirmation.

Quaest. Ent., 1984, 20 (4)
SUPERTRIBE CICINDELITAE

The systematic position of the Cicindelitae among the family Carabidae has been very much discussed. In spite of some exceptions, such as Mandl (1971:507-508) who suggests returning the group to the status of a distinct family, most modern authors have considered tiger-beetles a subfamily of Carabidae. Crowson (1967:109, 1981:694), who had originally (1955) considered the ‘Cicindelinae’ as a subfamily of Carabidae, suggested that the absence of urogomphi and ligula in larval tiger-beetles, adult labrum usually with more than six setae, and position of the front tibial spurs in adults support familial status for tiger beetles. Although not as yet published, Kavanaugh (pers. comm.) and other sources (e.g. Jeannel, 1946:106) indicate that numerous structural features suggest that the Cicindelitae is the sister group of Carabidae, that the complex is very old, and that the tiger beetle lineage became highly adapted to the hunt through specialization of mouthparts and ambulatory parts, and of course the larvae have adapted a unique prey capture technique and acquired or modified those features necessary for this. Here the group is considered part of the Carabidae, within present day usage of that taxon. A reclassification, potentially splitting Carabidae into many families, must await considerable amounts of study.

Horn (1910) proposed arrangement of the ‘Cicindelinae’ in two groups, Alocosternales (=Collyrinae Csiki, 1906) and Platysternales (=Cicindelinae Csiki, 1906). The genera of Alocosternales were arranged in two tribes, Ctenostomatini (=Ctenostomini auct.) and Collyrini. Of these only Ctenostomatini have Neotropical representatives: Collyrini are Oriental and Australian. The genera of Platysternales were arranged in the tribes Mantichorini (a small group of deserticolous species from southern Africa), Megacephalini, and Cicindelini. Each of these tribes was divided into subtribes. Many species, especially of Cicindela, have numerous “varieties” and “subspecies”, which certainly are not more than individual variants or population ecophenotypes.

The West Indian fauna is comprised of 2 genera and 18 species.

TRIBE MEGACEPHALINI

Megacephala Latreille, 1802. This is a diverse, worldwide genus with numerous Neotropical species. Horn (1910:130ff) arranged the species in several groups, which might be used as subgenera. Basilewsky (1966:13-14) suggested, in a revision of the African species, that at present it is not possible to divide the genus. Three species of *Megacephala* occur in the West Indies.

TRIBE CICINDELINI

Cicindela Linné, 1758. This is a highly diverse, worldwide genus, with nearly 700 species. In Horn's concept, the genus is quite homogeneous, but more recently authors (especially of the "French school" and followed by the American amateurs) have split the genus. Jeannel (1946:43ff) was the first author to propose the splitting, limiting himself to the species of Madagascar. In a series of papers, Rivalier (1950:217ff; 1954:250ff; 1961:121ff; 1963:30ff), dismantled *Cicindela*, recognizing 55 genera, most of which he described as new. Schilder (1953:539-576), recognized 17 genera, synonymizing several of the names previously proposed by Rivalier (1950). Rivalier's work is based exclusively on structure of the internal sac of the
aedeagus; Schilder's system is presently without any morphological basis. Rivalier (1954) studied the Neotropical species (including several species from southeastern United States) placing them in the following "genera" which should be regarded perhaps as species groups to bring them in line with the rest of the carabids, providing thus a more balanced system.

Cicindelidia Rivalier, 1954. Forty-six species distributed from the United States, Mexico, through Central America to the west of South America.

Habroscelimorpia Dokhtouroff, 1883. Ten species ranging from the United States to Venezuela and the Antilles.

Opilidia Rivalier, 1954. Five species whose aggregate range extends from Central America to Colombia and Venezuela.

Brasiella Rivalier, 1954. Twenty-three species distributed from Mexico to Argentina, of which 11 are recorded from Brazil. Rivalier (1955:77ff) revised the *argentata* group of this "genus", describing three new species and several new subspecies.

Ellipsoptera Dokhtouroff, 1883. Restricted to the United States, with nine species.

Dromochorus Guérin-Ménilville, 1845. With two Texan species.

The species of *Cicindela s. lat.* typically inhabit open area, especially river margins and sea beaches, however numerous of them may also be found in tall grass. Adults fly readily. A total of 15 species, arrayed among some of the genera above, have been recorded from the West Indies.

SUPERTRIBE OMOPHRONITAE

This supertribe contains a single tribe, the Omophronini.

TRIBE OMOPHRONINI

The single genus of this tribe is *Omophron* Latreille, 1802. Most of the species are in the Holarctic Region, a few are in the Oriental Region. Several species, included in the subgenus *Stenomophron* Semenov-Tian-Shanski, 1922, occur in Mexico; three occur in Central America, but are typical Nearctic elements; there is no Neotropical lineage. A single species, *Omophron dominicensis* Chaudoir, 1868a, was described from Santo Domingo, in the Greater Antilles, however Nichols (pers. comm.) informs us that this probably is a South African species that was mislabelled and that no *Omophron* species is indigenous to the West Indies.

Adults are distinctive in appearance because the body is so rotund. Larvae and adults live in bare sandy areas, near bodies of either standing or flowing water. During the day, adults hide in burrows in soil, or under stones near the water's edge. They are easily dislodged by splashing their hiding places with water.

Bänninger (1921) and Semenov-Tian-Shanski (1922) revised the world fauna of this subtribe. Benschoter and Cook (1956) revised the species of North America. Nichols (MS) using modern methods has studied the entire genus, especially those species of the New World.
SUBFAMILY SCARITINAE

The new contents of this subfamily are based on studies of Erwin and Stork (1984) and Erwin (1985).

SUPERTRIBE SIAAGONITAE

Only one tribe of this group occurs in the New World. Specimens of Siagona in the Museum in Paris labelled Venezuela and seen by one of us (TLE), appear to be mislabelled.

TRIBE ENCELADINI

Erwin (1978b) regarded this tribe as part of the Sigonitae based on both adult and larval characteristics, but maintained a tribal status for Enceladus based on larval features, recognizing full well that the genus Luperca appears to be intermediate in adult structures. Members of the single species of Enceladus are found under bark of large trees in South America. Recently, a single specimen was collected on Montserrat, B.W.I., thus the tribe is now known from the West Indies.

Enceladus Bonelli, 1813, which includes the single species E. gigas Bonelli (1813:460).

SUPERTRIBE PSEUDOMORPHITAE

This predominantly Australian supertribe (five genera), also has one genus in the Oriental Region, one in Africa, and one in the Western Hemisphere. Notman (1925) published a worldwide revision of the group, in which the genera are clearly defined, however the relationships among these are poorly understood and a modern revision is sorely needed. Erwin (1985), based on newly discovered characteristics, hypothesizes that this group belongs in the Scaritinae.

TRIBE PSEUDOMORPHINI

Most authors have considered the Pseudomorphini as a distinct subfamily, because of its very special characteristics. In recent years, only Crowson (1955:5, 6) did not give them such special status, apparently including them in the Harpalinae, together with Brachininae and thus following Jeannel (1941). The Harpalinae are considered a distinct subfamily by most authors.

Little is known about habits of Pseudomorphitae. Moore (1964), who described the first larva of the subtribe (of the Australian genus Sphallomorpha), described also the habits of adults of certain Australian genera, frequently found in association with ants. The larvae he described were collected in brood chambers of Iridomyrmex. There are few references about species of Pseudomorpha. Ogueta (1967:230) refers to a specimen of P. lacordairei (Dejean & Boisduval, 1829) collected in a termite nest, and Lenko (1972) collected larvae (in cocoons), pupae, and adults of P. laevissima Chaudoir, 1852 in nests of the ant species Camponotus rufipes. The larva of Pseudomorpha, only briefly described by Lenko, is similar to that of Sphallomorpha. Erwin (1981), in a synopsis of the supertribe, described larvae of Pseudomorpha and discussed all that is presently known of the group. According to Moore
(1964:246), larval characters of this group stress separation of Brachininae and Pseudomorphini in Balteifera, as originally suggested by Jeannel (1942a:1102). However, Erwin (1981) discussed phylogenetic relationships based on adult characteristics and believed the group should be classified near the Scaritini.

Pseudomorpha Kirby, 1825 (= _Heteromorpha_ Kirby, 1825; = _Axinophorus_ Dejean & Boisduval, 1829; = _Drepanus_ Dejean, 1831), which includes 20 species in the United States and Mexico, one in Haiti and six in Brazil and Argentina.

SUPERTRIBE SCARITITAE

According to Erwin (1985), the Scarititae is presently composed of three tribes, two of which reach the West Indies. Both the Scaritini and Clivinini are found as soil burrowers or at least running on top of the ground. The Morionini, a group of carabids found in decaying logs, have often been placed in this taxon. However, members of Morionini have closed middle coxal cavities, glabrous parameres, and the larva has an inner lobe (setiferous) on the maxilla, thus Erwin (1985) placed it in the Pterostichitae as a separate tribe and we follow that placement here. Larval characteristics need to be evaluated phylogenetically for the family in order to determine apotypy, thus the placement is still provisional.

Key to Tribes of West Indian Scarititae

1. Tarsomere 5 with unguitractor plate extended as setiform process between claws ... Clivinini, p. 371
1'. Tarsomere 5 with unguitractor plate not extended as setiform process .. Scaritini, p. 370

Key to Subtribes of West Indian Scarititae

1. Antennal scape with single preapical setigerous puncture ... 2
1'. Antennal scape asetose .. 3
2 (1). Elytron with lateral series of umbilicate punctures reduced to two groups of 0-3 punctures behind humerus and before apex .. Dyschiriina, _Dyschirius_ Bonelli, p. 371
2'. Elytron with lateral series of umbilicate punctures either not interrupted or at least not markedly so ... Clivinina (= _Ardistomina_), p. 371
3 (1'). Mentum with median tooth longer than lateral lobes, extended obliquely dorsad almost to ventral surface of labrum. Mandibles edentate, falcate, slender. Head with one or more pairs of supraorbital setigerous punctures ... Forcipatorina, p. 373
3'. Mentum with tooth subequal in length to lateral lobes, not extended dorsad. Mandibles with large teeth basally. Head with single pair of supraorbital setigerous punctures .. Scaritina, p. 370

Quaest. Ent., 1984, 20 (4)
TRIBE SCARITINI

Scaritini occur in all major zoogeographical regions; genera are numerous, and several genera are rich in species. There are no recent revisions of the Neotropical Scaritini as a whole, except for Bänninger's world monograph of the Scaritina (see below). Even the subdivisions of the tribe are not well established; many genera have not been critically studied in recent years, so their position herein must be considered provisional. Members of the Scaritini are generally large to very large beetles; the males have multisetiferous parameres, and the unguitractor plate of the terminal tarsal segment is not setiform.

One subtribe of Scaritini in the old sense, the Scapterina, has usually been listed for the Neotropical Region with one genus, *Listropus* Putzeys, 1863. However, *Listropus* is now regarded as a subgenus of *Schizogenius* Putzeys (Whitehead and Reichardt, 1977), thus they are in the following tribe, Clivinini. The Scapterina are thus not represented in the New World (see also Jeannel 1946:220).

SUBTRIBE SCARITINA

A large, cosmopolitan subtribe, with usually large members, many of fossorial habits, and with brachypterous or apterous adults. One genus, with several subgenera, has been recorded in the West Indies.

Key to Subgenera of West Indian *Scarites*

1 With ventral “strigae”. Clypeus of most specimens with one pair of setigerous punctures. Pronotum with postangular seta and at least one anterior. Metasternum of most specimens with one or more setigerous punctures ... 2.
1’ Without ventral “strigae”. Metasternum of most specimens asetose 3
2 (1) Metasternum, behind middle coxae, as long or longer than hind coxae. Frontal sulci not narrow and deep in most specimens, confused with the longitudinal rugosity between eyes *Distichus* Motschulsky, p. 370
2’ Metasternum of most specimens much shorter than hind coxae. Head with frontal sulci shallow, between supra-orbital setae usually with coarse punctures and longitudinal rugae. Prosternal process of most specimens punctate and setose. Middle tibia of most specimens with second tooth more or less developed *Taeniolobus* Chaudoir, p. 371
3 (1’) Mandibles with dorsal surface striate *Scarites s. str.* Fabricius, p. 370
3’ Mandibles with dorsal surface smooth *Antilliscaris* Bänninger, p. 371

Scarites Fabricius, 1801. This is a highly diverse, cosmopolitan genus, whose species are arrayed in several subgenera. Only four of these occur in the Neotropical Region, all of which have West Indian representation. Seven species in total are known to occur in the West Indies.

Distichus Motschulsky, 1857 (= *Lophogenius* Motschulsky, 1857; = *Scaritodes* Chaudoir, 1879; = *Adialampus* Gozis, 1882; = *Dischistus* Portevin, 1929). Species of this subgenus occur in the Old World and in the Neotropical Region from Mexico to Argentina, including the West Indies). There are 17 Neotropical species (revision: Bänninger, 1938).
Taeniolobus Chaudoir, 1855 (=Pleurogenius Motschulsky, 1857; =Stigmaterus Motschulsky, 1857; =Scairis Chaudoir, 1879). This subgenus includes African, Oriental, and Neotropical species (including a Cuban species).

Scarites s. str. (=Parallelomorphus Motschulsky, 1850; =Pharamecomorphus Motschulsky, 1857). Species of *Scarites* live in almost all zoogeographical regions; in the New World there are species from the United States to Argentina, and also in the West Indies (revision: Bänninger, 1938).

Antilliscaris Bänninger, 1949. The three species of this endemic West Indian subgenus are known only from Puerto Rico (Hlavac, 1969; Darlington, 1970).

TRIBE CLIVININI

The subtribe Ardistomina is here combined with Clivinina, because relationships among their respective genera are not known. Kult (1950) limited the Ardistomina to *Ardistomis, Aspidoglossa* and *Neoreicheia*, as genera with dilated male protarsi, but this probable plesiotypic characteristic is not stable even among these lineages; also, the key characteristics used to distinguish *Neoreicheia* (reduced eyes and enlarged genae) occur in various *Ardistomis s. str.* These three genera along with *Oxydrepanus* and such Old World genera as *Reicheia, Syleter*, and allies probably do form a monophyletic radiation, but even if that is so its precise relationship to other Clivinina is not known. Some workers have assigned *Schizogenius* and *Solenogenys* to the Ardistomina, but the former is a clivinine and the latter a salcediine (=Forcipatorina, see below).

The isolated position of *Dyschirius* and allies, usually assigned to the Clivinina, was discussed by Bruneau de Miré (1952) and Whitehead (1969), with the conclusion that they belong to a separate subtribe, Dyschiriina, of unclear affinity. We choose here to include them in the Clivinini and note that they may constitute a separate tribe.

SUBTRIBE DYSCHIRIINA

See Whitehead (1969) for discussion of contents, characteristics, and general distribution of this subtribe. Kult (1950) recognized two genera for the Neotropical species that he studied: *Akephorus* LeConte and *Dyschirius* Bonelli. Lindroth (1961:137) treated the two groups as congeneric, but they probably should be regarded as distinct genera. South American species referred to *Akephorus* by Kult (1950) belong to *Dyschirius*, subgenus *Dyschiridius* Jeannel (Whitehead, 1969).

Dyschirius Bonelli, 1813. Primarily of Megagaean distribution, most of the species of this diverse genus are in the Nearctic and Palearctic Regions. However, 18 described species are represented in the American tropics, with a known aggregate range extending as far southward as the Pampas of Argentina. No satisfactory subgeneric classification has been proposed. Members of *Dyschirius* live on bare clay or sand, often near water. Adults and larvae, so far as known, prey on staphylinids of the genus *Bledius*, and on heterocerids (Lindroth 1961:137).

SUBTRIBE CLIVININA

This is a highly diverse subtribe, with numerous genera and species. The group was studied by Putzeys (1846; 1863; 1866), but there is no general recent revision. Several genera

Quaest. Ent., 1984, 20 (4)
recognized by Putzeys have not been studied since their description, thus identification is difficult. Though some of these genera may prove invalid, it is probable that careful study will show many more that are new.

Key to the Genera of West Indian Clivinina

1. Frons with six to eight longitudinally directed carinae between eyes 2
1'. Frons without carinae, but with two deep frontal furrows, or rugose and tuberculate, or with transverse grooves .. 3

2. (1) Gula narrow, about equal in width to distance between inner pair of paramedian submental setae; lacinia setose only on outer margin; ovipositor of female plurisetose *Schizogenius* Putzeys, p. 372
2'. Gula broad, nearly equal in width to distance between outer pair of submental setae; lacinia setose or inner and outer margins; ovipositor of female unisetose *Halocoryza* Alluaud, p. 372

3. (1') Pygidium with dorsolateral projection fitted between well developed elytral plica and end of elytral epipleuron .. 4
3'. Pygidium without projection; elytral plica short and toothlike or absent 5

4. (3) Clypeus with prominent paramedian lobes; frons with pair of shallow grooves (in addition to frontal furrows) in form of flaring 'V'; mandible of average proportions, decussate at anterior margin of labrum .. *Aspidoglossa* Putzeys, p. 373
4'. Clypeus without prominent paramedian lobes; frons smooth, with only normal frontal furrows; mandibles long and slender, decussate beyond anterior margin of labrum *Ardistomis* Putzeys, p. 373

5. (3') Apical palpomere acuminate .. 6
5'. Apical palpomere not acuminate .. *Clivina* Latreille, p. 372

6. (5) Male anterior tarsal articles dilated *Neoreicheia* Kult
6'. Male anterior tarsal articles not dilated *Oxydrepanus* Putzeys, p. 373

Clivina Latreille, 1802 (*Ceratoglossa* MacLeay, 1866). A markedly diverse, worldwide genus, of which 83 species occur in the Neotropical Region, from México to northern Argentina, including eight in the West Indies. Kult (1947) recognized four subgenera having Neotropical species: *Paraclivina* and *Semiclivina* Kult, *Clivina s. str.*, and *Eupalamus* Schmidt-Goebel (=*Eupalama* Motschulsky, 1861). The name *Eupalamus* was previously used in Hymenoptera by Wesmael, 1845, and later in Diptera by Jaennicke, 1867, and this subgenus was renamed *Reichardtula* Whitehead (in Reichardt, 1977). Kult (1959) regarded *Paraclivina* as a distinct genus, perhaps with good reason, but this action is not followed here; the four subgenera recognized by Kult seem clearly to represent distinct lineages, but at best they represent only a small portion of the Neotropical *Clivina* fauna and hence are not further discussed here.

species of subgenus *Listropus*. One species has been recorded from the West Indies.

Oxydrepanus Putzeys, 1866. A genus of minute members, exceedingly diverse in aedeagal structure, doubtless related to *Neoreicheia*, and probably belonging to the ardistomine radiation. Two species have been recorded from the West Indies.

Ardistomis Putzeys, 1846 (with subgenera *Ardistomis* s. str. and *Semiardistomis* Kult, 1950. *Ardistomiellus* Kult, 1950, is a junior synonym of *Semiardistomis*). *Ardistomis* is exclusively American, with 11 species occurring in the Antilles.

Aspidoglossa Putzeys, 1846. A New World genus with 25 Neotropical species (distributed from southeastern United States to northern Argentina and Antilles), of which three have been recorded from the West Indies.

SUBTRIBE FORCIPATORINA (=OXYSTOMINA)

This is a small subtribe of Clivinini which occurs predominantly (and possibly exclusively) in the Neotropical Region. Two Oriental genera have to be restudied before their inclusion in the group is warranted. The species of the subtribe, placed in six genera (Jorge de Silva, MS) are exclusively South American, with a single species of *Stratiotes* Putzeys, known from the Lesser Antilles (Martinique and Dominica). Recent studies by Erwin and Stork (in prep) have shown that the members of *Salcediina* constitute the sister group of *Stratiotes*, thus the two subtribes, Forcipatorina and Salcediina, will be merged.

SUPERTRIBE PAUSSITAE

At present it is well established that paussids are true Carabidae (the first author to verify the fact seems to have been Burmeister, 1841:76). Kolbe (1927:205; 1930:16) definitively related the Paussini to Ozaenini, having been followed by more recent authors (Darlington, 1950; Crowson, 1955; Basilewsky, 1962; Lindroth, 1969b:xxi). Other authors, e.g. Jeannel (1941:89; 1946:45, 46), even though accepting the relationships between the two, continued to consider the Paussidae as a distinct family, thus accepting a polyphyletic classification. Crowson (1955:6; 1981:694) considered the group at family level, including in it the “Ozaeninae”.

Recent work on defense chemicals, and structure of the defense mechanism (Eisner et al., 1977, Moore 1979) and reanalysis of data in Erwin 1970 (Erwin 1979) show that the bombardier beetles, Brachinidae, have a sister group relationship with the Ozaenine/Paussine lineage. Erwin (1979) included the Metriitae and Nototylini in the Paussinae, however, neither of these groups occur in the West Indies.

SUPERFAMILY PAUSSINAE

Darlington (1950) arranged the paussids in three tribes, the Protopaussini, Paussini and Ozaenini. Protopaussini, of which very little is known, is a primitive tribe restricted to the Oriental Region. Paussini are myrmecophiles. Each species apparently occurs with a different species of ant, and the hosts are known to belong to the tribes Myrmicini or Camptonotini. Carvalho (1959) records several African species of *Paussus in Pheidole nests* (Myrmicini). Jeannel (1946) found no relationship between the classification systems of these ants and carabids, although this should be restudied with modern methods. In South America, only one

Quaest. Ent., 1984, 20 (4)
species has been found thus far in an ant nest (*Monacis*, Dolichoderini). Very little is known about the life history of the third tribe, the Ozaenini, but *Physea* adults and larvae have been collected from nests of *Atta* (Attini), the leaf-cutting ants. Adults of other genera have been collected from beneath bark of fallen trees or, at night, on logs.

Wasmann (1929) described 20 fossil species from Baltic amber (end of Eocene or beginning of Oligocene), which he placed in seven genera, of which only *Arthropterus* is present in the recent fauna (of Australia). Darlington (1950:85) suggested that Wasmann exaggerated the number of both genera and species (all based on single specimens). Unfortunately, a restudy of these fossils has not been undertaken.

TRIBE OZAENINI

This tribe includes 14 genera (Bänninger, 1927) which occur in the Australian, Oriental, Ethiopian (including Madagascar) and Neotropical Regions (a few species occur in southwestern United States). Only the genus *Pachyteles* has been recorded in the West Indies.

Little is known about the habits of Ozaenini. Adults of some genera of the Oriental Region were collected in decaying wood: at least one species of *Physea* (possibly *Physeomorpha* as well), has myrmecophilous habits. Larvae are only known of *Physea* and *Pachyteles* (van Emden, 1942:24-25). Adults of several genera occurring in Central and South America are “bombardiering” beetles. All aspects of this activity are like those of *Brachinus* and *Pheropsophus*, except the droplets are released from side turrets (flange of Coanda) rather than a medial one.

Pachyteles Perty, 1830. This is the richest and most diverse Neotropical genus of the tribe, with at least 50 species (plus two in the southern United States); two have been recorded from the West Indies. There is no revision of the genus, and identification of the species is nearly impossible. A larva of one species from Guatemala was collected from beneath bark (van Emden, 1942:59).

SUPERTRIBE BRACHINITAE

This group is usually separated from the rest of the carabids because of the number of normally visible abdominal sternae of adults. All other carabids have six, but brachinine females have seven and males have eight. This structure is correlated with the “bombarding” mechanism, i.e., the capacity to eject volatile substances through a small opening in front of tergum IX. The larger number of exposed segments permits more mobility of the abdomen, permitting the droplets of volatile substance to be aimed toward a target (Eisner, 1958).

Because of this defense mechanism of adults, Brachininae are known as “bombardier beetles”. This behaviour is not restricted to this supertribe, having been recorded for other tribes as well (e.g. *Galerita*, see below; *Agra*, see Erwin, 1979; *Ozaenini*, see above), however the unique structures are restricted. There is also an old reference that helluonine adults have the capacity to bombard, but this has not been confirmed in recent years (Reichardt, 1974b:221-222). Reichardt (1971a) recorded bombarding behaviour for *Pheropsophus aequinoctialis* and *P. rivieri*, and it is known that both *Pheropsophus* and *Brachinus* adults are true bombardiers.

Erwin (1970), following Ball (1960), considered this supertribe as a division, Brachinidae, with the genera arranged in two tribes, Crepidogastrini (restricted to the southern parts of
Africa and India) and Brachinini (worldwide in distribution). However, in the last decade much information has come forth and Erwin (1985) now considers the Brachinitae a sister group of the Paussitae.

TRIBE BRACHININI

This is the only tribe of Brachinitae represented in the New World. Erwin (1970) recognized four subtribes, of which the Mastacina and the Aptinina are Old World. Pheropsophina and Brachinina have Neotropical representatives as well as Old World ones, each with a single genus.

Larvae and pupae of three Old World species are known. For the New World, Erwin (1967, 1972) described the way of life and development of *Brachinus pallidus* Erwin from California, and summarized what is known about the life history of members of the genus. *B. pallidus* larvae develop on pupae of Hydrophilidae (genera *Tropisternus* and *Berosus*). According to Erwin (1970), “ectoparasitoidism” is obligatory for post-embryonic development, at least in the North American species of *Brachinus*.

Key to Genera and Subgenera of West Indian Brachinini (from Erwin, 1970)

1 Mandibular scrobe plurisetose *Brachinus (Neobrachinus)* Erwin, p. 375

1' Mandibular scrobe unisetose *Pheropsophus (sensu stricto)* Solier, p. 375

Brachinus Weber, 1801 (=*Brachynus* auct.). A cosmopolitan genus, with many species, placed in several subgenera. All Western Hemisphere species have been placed in subgenus *Neobrachinus* Erwin, 1970. This subgenus ranges from Canada to Argentina (but seems to be absent from Chile). Several of the Mexican species occur in the United States as well, and vice versa. Very few of the typically South American species occur in Central America. The South American fauna is very poorly known, and the status of the described species is uncertain. A revision of these species would be welcome. Twenty-four named species are known from South America, many from Argentina and Uruguay; 11 have been recorded from Brazil. Sixty-eight species are known from North and Middle America. Only two species are recorded from the West Indies.

Pherosophus (sensu stricto) Solier, 1833. According to Erwin (1970), this genus is endemic to the Neotropical Region, with most species occurring in South America (one species is known only from México, and one of the South American species occurs as far north as southern México on the Yucatan Peninsula). Erwin (1971a) discussed nomenclatorial problems relative to genera and subgenera. At present, the group includes six species (and 12 varieties); only two of these have not been recorded from Brazil. *P. aequinoctialis* (Linne) has the broadest range (from Argentina to southern México and the Greater Antilles), and adults are highly varied in color (most known “varieties” belong to this species). *P. platycephalus* Reichardt from northeastern and eastern Brazil, is the only known aperous species. Externally, adults resemble those of *P. biplagiatus*, but do not belong to subgenus *Protopheropsophus*.

Quaest. Ent., 1984, 20 (4)
SUBFAMILY PSYDRINAE

The Psydrinae as defined by Erwin (1985) contain all those tribes in which members possess conjunct mesocoxae and males have setiferous parameres.

SUPERTRIBE RHYSODITAE

At present this supertribe contains one tribe with numerous genera.

The inclusion of rhysodids as a tribe of Carabidae rather than a family of its own (which previously was even placed among the Polyphaga, near Colydiidae), has been advocated in recent years by Bell & Bell (1962) and Bell (1970). Hlavac (1975), in his paper on the prothorax of Coleoptera, includes the Rhysodini as a tribe of Carabidae. According to these authors the Rhysodini have typical caraboid characters, even though the larva is quite aberrant, and it might be added that if such groups as Cicindelitae, Omophronini, and Paussinae, among others, are included in Carabidae, the same treatment should be given the rhysodids.

According to Bell (1970), the closest relatives of Rhysodini among Carabidae seem to be the Scaritini, and perhaps closest to the subtribe Salcediina, whose adults have a superficial resemblance to those of Rhysodini, and also have the widely separated hind coxae, with a large intercoxal piece. The salcediinas have, however, as typical Scarititae, the transverse suture in front of the hind coxae, which is absent from rhysodine adults. Until such time as the primitive Pterostichini (Cratocerus and company), Psydrinae, and Morionini are analysed phylogenetically (groups which are thought pivotal in placing the rhysodines), we follow Erwin (1985), in placing the rhysodines at the base of the Psydrinae.

TRIBE RHYSODINI

This tribe is relatively small with worldwide distribution, and a total of about 130 species. Bell (1970) revised the North and Middle American, and Antillean fauna.

The Rhysodini are adapted to life in rotting wood and eat fungal mycelia, a habitat shared by both adults and larvae. Larvae of Neotropical species are thus far undescribed; Boving (1929:69, pl. 15) described the larva of the North American Clinidium sculptile Newman; Burakowski (1975:271ff) described that of the European Rhysodes sulcatus (Fabricius).

Key to Genera of West Indian Rhysodini

1 Minor setae of antennomers (except 11) ring-like and near apex

... Plesioglymmius Bell and Bell, p. 377

1' Minor setae of antennomers (except 11) tuft-like and on ventral surface, or absent ... Clinidium Kirby, p. 376

Clinidium (sensu lato) Kirby, 1835. A worldwide genus, whose species are arrayed in several subgenera. The classically accepted subgenus Clinidium s. str. was subdivided by Bell (1970); Vulcano & Pereira (1975) continue to use Clinidium s. str. in this classical sense. Three of the subgenera of Clinidium thus occur in the Neotropical Region.

Clinidium s. str.. This subgenus is well represented in the Neotropical Region, with 11 species endemic in the Antilles (most described as new by Bell, 1970).
Plesioglymmius Bell and Bell, 1978. The range of this genus is disjunct, with one area including the Greater Sunda Islands and Mindanao, and the other Brazil and Cuba. There are a number of undescribed species (Bell, pers. comm.). One species has been reported from the West Indies.

SUPERTRIBE TRECHITAE

This supertribe is comprised of several tribes, all of which have rather small members. The groups are diverse in habitat and structure and occur in most habitable areas of the world.

TRIBE TRECHINI

This is a tribe of small carabids of worldwide distribution, but with predominence of genera and species in the cold and temperate parts of the World (distribution similar to that of Bembidion). In features of life history, the taxa are organized in two groups, one with subterranean habits (usually cavernicolous species with reduced eyes) and a terricolous group (with well-developed eyes). A small subgroup of the latter are marine species, which live among rocks in the intertidal zone. In the Neotropical Region, marine species are only known from southern South America. In the tropical parts of the continent relatively few species are known, possibly because they occur in habitats rarely adequately collected, i.e. deep humus and soil.

Larvae of Neotropical species are unknown; those from the Old World are well known (van Emden, 1942:28-30).

SUBTRIBE PERILEPTINA

TRIBE POGONINI

This is a tribe of eight genera according to Csiki (1928), especially of the Old World, with halophilous species whose members are encountered along sea shores or at the margins of salt lakes. Chaudoir (1871b) studied the whole group; the two genera occurring in the Neotropical Region were recently studied by Reichardt (1974a). Immature stages are only known for Old World species (van Emden, 1942:17).

Diplochaetus Chaudoir, 1817b. Two species in the United States, one in México and one in the Antilles and northern South America (also recorded from Brazil). Members live on coastal and lowland saline beaches. Adults are nocturnal.

TRIBE BEMBIIDIINI

A tribe of worldwide distribution and predominant in all regions of both hemispheres. The tribe is well represented in southern South America, especially by Bembidion; Central America and the Antilles have many species, some with clear Nearctic relationships. The tropical species of South America have not been studied in recent years and are rarely found in collections. In recent years this fauna, especially the Tachyina, has been studied by Erwin (1971b, 1973,
Bembidion, with fewer tropical species and more temperate ones has been studied by Erwin and Kavanaugh (1980, 1981) and Erwin (1982). Jeannel (1962) studied the fauna of the southern parts of South America; unfortunately he recognized too many genus-group taxa without clear affinities. Thus, this fauna is still in need of a thorough revision.

The habits of Bembidiini are varied. Members of Bembidiina are mostly riparian or seabeach species; a few occur near inland ponds and at the edges of wet alkaline sloughs. Anillina includes tiny endogean, anophthalmous individuals which live in deep humus in upland habitats. Several new species were recently discovered in Guatemala using sifting and berlese methods; many more will doubtless be found throughout the Neotropical Region. Tachyina are the most diverse of the tribe. These rather small beetles occur as arboricoles, in wood and under bark, epigean and hypogeans, near water of all kinds, on sea beaches, and near other salt deposits. Several live among epiphytes in the forest canopy. Larvae are known for Tachyta and Mioptachys (Erwin, 1975) and probably for Xystosomus (Erwin, 1973; van Emden, 1942).

Key to Subtribes of West Indian Bembidiini

1 Front tibia truncate, not notched apico-laterally 2
1' Front tibia obliquely and markedly notched apico-laterally 3

2 (1) Abbreviated scutellar interneur present; recurrent groove of elytral apex absent ... Bembidiina, p. 381
2' Abbreviated scutellar interneur absent; recurrent groove of elytron present .. Tachyina, in part (Xystosomus and Mioptachys), p. 380

3 (1') Body pale and generally pubescent; with or without eyes, if with eyes, then head somewhat withdrawn into pronotum 4
3' Body pale or dark, with fixed tactile setae only; eyes present; head not withdrawn into pronotum .. Tachyina, p. 379

4 (3) Labrum deeply notched and covering mandibles; elytral apices soft, separated at suture, and more or less truncate; flight wings and eyes present in most adults ... Tachyina, in part (Lymnastis and Micratopus), p. 381
4' Labrum entire and not covering mandibles; elytral apices normal, not soft, held together at suture (in adults of many species) and rounded; flight wings and eyes absent .. Anillina, p. 378

SUBTRIBE ANILLINA

Jeannel (1937, 1963) published two monographs on this group. Although mostly occurring in temperate zones, few representatives are in the Neotropical Region. Taglianti (1973) studied the Mexican species and Erwin (1982) reviewed the Central American species. It is most probable that the paucity of the tropical fauna is due to the lack of collections from suitable habitats.

Stylulus Schaufuss, 1882 (= Petrocharis Ehlers, 1884). A monobasic genus from the Virgin Islands and southeastern United States, originally described in Colydiidae. It is highly likely that several species are extant, but have not been collected. We doubt that the species from the Virgin Islands is conspecific with the mainland United States form(s).
SUBTRIBE TACHYINA (INCLUDING MICRATOPINA, = LIMNASTINA)

A diverse subtribe which, until very recently, was chaotic from the taxonomic point of view. Most authors have considered Micratopina (= Limnastina) a distinct group, but Erwin (1974a) united this assemblage with Tachyina. Jeannel (1962) studied the Tachyina (sensu stricto) of the southern tip of South America and described a few new genera. Erwin (1974b) redefined the genera, synonymizing some names proposed by Jeannel, and published revisions of several genera (Erwin, 1973, 1974b, 1975). Most new World genera occur in the West Indies, therefore a complete key is given below.

Key to Genera of Neotropical Tachyina (modified from Erwin, 1974a; see Erwin, 1974b, for elytral setal codes)

1. Elytron impunctate, with eight longitudinal carinae extended from base to apex. Pronotum with five carinae. Head with three carinae. ... Costitachys Erwin

1'. Elytra, pronotum and head non-carinate or, elytra carinate-punctate. 2

2 (1'). Mentum without deep foveae, with or without shallow depressions on each side ... 3

2'. Mentum with two deep foveae, each circular or horseshoe-shaped 8

3 (2). Front tibia almost or perfectly truncate at apex .. 4

3'. Front tibia markedly oblique apico-laterally .. 5

4 (3). Elytral disc without setae Ed2-6. Specimen convex Xystosomus Schaum

4'. Elytral disc with setae Ed3 and 5. Convex or depressed, with markedly reflected pronotal margins .. Miopachys Bates, p. 380

5 (3'). Elytra and abdominal sternae sparsely pubescent, remaining parts of body of most adults also pubescent: Color testaceous or flavo-testaceous. Head slightly or markedly retracted into pronotum. Recurrent stria of elytron absent or indistinctly marked ... 6

5'. Elytra and abdominal sternae not pubescent. Testaceous or black. Head not retracted into pronotum. Recurrent stria distinctly marked .. 7

6 (5). Sternum VI of both sexes with four long setae along posterior margin, lateral setae falciform ... Micratopus Casey, p. 381

6'. Sternum VI with long, erect setae: male with two, female with four Lymnastis Motschulsky, p. 381

7 (5'). Recurrent stria of elytron short, curved, closer to suture than to lateral margin. Form convex or subdepressed ... Elaphropus Motschulsky, p. 380

7'. Recurrent stria elongate, straight, very close to lateral margin. Form usually depressed ... Tachyta Kirby, p. 380

8 (2'). Recurrent stria elongate, extended anteriorly beyond seta Ed6, and from there curved backward, hook-shaped ... 9

8'. Recurrent stria short, curved, not extended beyond seta Ed6, or elongate, and near lateral margin ... 10

9 (8). Elytral interneur 8 subsulcate beyond middle, with apical portion of sulcus

Quaest. Ent., 1984, 20 (4)
curved medially behind setae Ed5 and 6. Recurrent stria in form of hook around Ed6. — *Paratachys* Casey, p. 381

9′ Elytral interneur 8 subsulcate, but not curved medially next to Ed5 and 6. Recurrent stria in form of hook around Ed6 or erased near Ed6. — *Tachys* Stephens, p. 381

10 (8′) Pronotum without posterior angles. Form pedunculate. Interneur 8 externally absent. — *Liotachys* Bates

10′ Pronotum with posterior angles, or at least not with pedunculate form. Interneur 8 complete, or at least present anteriorly and/or posteriorly. — 11

11 (10′) Elytral interneurs erased or indistinctly striate. Form small and depressed or subdepressed. Testaceous or flavous. — *Polyderis* Motschulsky, p. 381

11′ Elytral interneurs punctate or sulcate-striate. — 12

12 (11′) Elytral interneur 8 of most adults with post-humeral fovea(e) in basal fourth or in middle; or elytra with eight completely punctate interneurs. — *Pericompsus* LeConte, p. 380

12′ Elytral interneur 8 non-foveolate, nor elytron with more than five interneurs externally visible. — *Meotachys* Erwin

Mioptachys Bates, 1882 (= *Tachymenis* Motschulsky, 1862, junior homonym of *Tachymenis* Wiegmann, 1835. For details, see Erwin, 1976). A predominantly Neotropical genus (12 named species, four in Brazil), with a single species in the Nearctic Region. Three species have been recorded in the West Indies.

Elaphropus Motschulsky, 1839 (= *Tachylopha* Motschulsky, 1862; = *Tachyura* Motschulsky, 1862; = *Barytachys* Chaudoir, 1868b; = *Sphaerotachys* Müller, 1926; = *Trenapontachys* Alluaud, 1933; = *Tachyphanes* Jeannel, 1946). A predominantly Holarctic genus, with numerous species in the Old World, several in the Nearctic, and 10 or so in the Neotropics. Two species have been recorded in the West Indies.

Pericompsus (sensu lato) LeConte, 1851 (= *Tachysops* Casey, 1918a = *Tachysalia* Casey, 1918a = *Leiotachys* Jeannel, 1962 = *Leptotachys* Jeannel, 1962). In his recent revision of the genus, Erwin (1974b) arranged *Pericompsus* in three subgenera, two Neotropical and *Upocompsus* Erwin in the Australian Region. Three species have been recorded in the West Indies.

The two Neotropical subgenera are distinguished as follows:

1 Interneur 8 with deep almost perforate fovea, in middle of elytron or slightly in front of middle. Each elytron also with two subhumeral, variously placed foveae. Setae Eo4 in position "d". — *Pericompsus* (sensu stricto), p. 380

1′ Interneur 8 without fovea in or near middle. Foveae posterior to humeri shallow, each with seta, or small, perforated, in basal 0.25, next to seta Eo4c; or foveae absent. — *Eidocompsus* Erwin, p. 380

Eidocompsus Erwin, 1974b. With 13 Neotropical species, of which one is known from the West Indies.

Pericompsus (sensu stricto). With 46 species, of which 6 are known from the West Indies.
Carabid Beetles of the West Indies

Tachys Stephens, 1828b (=*Isotachys* Casey, 1918a). A Nearctic genus, with several species in México, Guatemala, and Antilles. Three species have been recorded on the West Indies.

Paratachys Casey, 1918a (=*Eotachys* Jeannel, 1941). A worldwide genus, with hundreds of Neotropical species, almost totally undescribed. These are predominantly from México, Central America, and Antilles, but several are known from Brazil and other countries. Nine species have been recorded in the West Indies.

Micratopus Casey, 1914a (=*Blemus* LeConte, 1848, not Stephens). As redefined by Erwin (1974a), this New World genus includes two Antillean species.

SUBTRIBE BEMBIDIINA

A highly diverse subtribe and taxonomically complex. This group needs to be restudied and Erwin and Kavanaugh (1980, 1981) and Erwin (1982) have begun their monographic treatment of the subtribe.

Very few species are known from tropical parts of the Neotropical Region, however many species do occur in the tropical highlands, especially in the West Indies.

Bembidion (sensu lato) Latreille, 1802 (=*Bembidium* auct.). A worldwide genus, subdivided in a large number of subgenera, with 10 described species known from the West Indies. The _vernale_ group (Erwin, 1982) has undergone radiation on the mountain systems of the larger islands just as it has in the highlands of Central America.

SUBFAMILY HARPALINAE

This subfamily is here defined as those groups whose members possess conjunct mesocoxae and conchiferous male parameres without setae (as an apotypic state).

SUPERTRIBE PTEROSTICHITAE

This supertribe must surely be the largest and most disparate of the family. Not only have many groups been dumped here based on gross similarity, but many other groups, rather non-similar in appearance, have been included. The group as a whole is inadequately known systematically.

TRIBE MORIONINI

This is a tribe of about 10 genera (Csiki, 1929:479), mostly of the tropics of the Old and New Worlds. Most authors have considered the Morionini as a subtribe of Pterostichini (an action even maintained by Straneo, _in litt._), but more recently it has been considered as a distinct tribe, of uncertain relationships. Whitehead & Ball (1975), discussing relationships of

Quaest. Ent., 1984, 20 (4)
the groups within Pterostichini, exclude Morionini and Catapiesini from the tribe. Here it is regarded as a tribe, following Erwin (1984), somewhat intermediate between the psydrines and Cratocerus and company of Pterostichini. Larval characteristics indicate strong relationship with the pterostichines, even though some features tend to resemble those of certain scaritine larvae (cf. Thompson, 1977, 1979; Jorge-Silva and Costa, 1983).

As far as known, adults and immatures of Morionini live in fallen logs and adults have well developed wings. Van Emden (1953b:51-54) described and discussed the presumed larva of Morion orientale Dejean, comparing it to a larva which he earlier (1942:27) had referred to the scaritine genus Scarites, subgenus Distichus, but in reality was that of Morion cordatum Chaudoir, (cited as Morion georgiae Palisot). Reichardt reared the larva of Morion brasiliense Dejean. Two genera occur in the New World, only one of which is found in the West Indies.

Morion Latreille, 1810 (= Morio auct.). A genus of worldwide distribution, with several Neotropical species (one from the Antilles).

TRIBE PTEROSTICHINI (INCLUDING AGONINI)

The Pterostichini is one of the most diverse groups of Carabidae and likely the last of an old stock which gave rise to many of the higher carabid groups. It has many taxa which are typically cold-temperate (in South America represented in the southern part of the continent) and others tropical. It seems that Pterostichina are commoner in colder and more temperate climates, being replaced by Agonina in the tropics.

The Neotropical fauna is taxonomically difficult. One of the problems is divergence in generic concepts, e.g. the Jeannel (splitting) versus the more conservative (lumping) concept. Many monobasic or very small genera have not been properly studied and compared with each other, and their status and systematic position remains unsettled. On the other hand, there are markedly diverse worldwide "genera" such as 'Pterostichus' and 'Colpodes', both of which are paraphyletic, if not polyphyletic.

Part of the confusion arises from Csiki's world catalog of Carabidae (Csiki, 1929; 1930; 1931). Several of the groups included in the tribe have already been eliminated from it by subsequent authors. These are:

1. The subtribe Morionini (Csiki, 1929:474-484), at present considered a distinct tribe by many authors and here included as such.

2. The subtribes Meonidi (Csiki, 1929:484), Melisoderi (ibidem:485-486), Tropidoptera (ibidem:486-491) and Psydri (ibidem:494), were all fused to form the tribe Psydrini, and the Nomiini are considered a separate tribe. Although none of these are present in the West Indies, the included checklist ranks these groups as full tribes after Erwin (1984).

3. The subtribe Catapiesi (Csiki, 1929:492-493), is now also considered a distinct tribe of Lebiitae.

With these groups eliminated, there still remains the bulk of genera in the tribe, and the confusion is great; it is impossible to identify the natural system now.

A second problem is arrangement of genera in subgroups or even limits of the tribe. One of the highly diverse groups within this tribe is the Agonina, which has been accorded very different status by different authors. Csiki (1931:739) considered them as a subtribe of his Pterostichini, and has been followed by such authorities as Lindroth (1966:441). Ball (1960:129) preferred to consider the Agonini as a distinct tribe, but in a more recent paper (Whitehead & Ball, 1975:595) returned the agonines to Pterostichini, and did the same with
another group here considered as a distinct tribe (the Lachnophorini). Their action, in relation to the Agonina, was justified by the fact that they fused a genus of true Pterostichini with a genus normally considered agonine (see the subtribe Cyrtolaina).

Lindroth's (1966) arrangement of the Pterostichini is restricted to the Nearctic fauna, not including the several tropical groups. Here, Whitehead & Ball (1975) are followed, with the inclusion of Caelostomina and the exclusion of the Lachnophorini.

Key to the Subtribes and Genera of West Indian Pterostichini

1 Scutellar interneur absent .. 2
1' Scutellar interneur present .. 4

2 (1) Anterior tibia markedly dilated apically; antennomeres 4-10 quadrate, about as wide as long Caelostomina, Caelostomus MacLeay, p. 384
2' Anterior tibia not dilated much apically; antennomeres 4-10 longer than wide, filiform .. 3

3 (2') Dorsal surface metallic blue, copper, or green Euchroina, Dyschromus Chaudoir, p. 384
3' Dorsal surface not metallic, piceous or rufous, often spotted and/or iridescent Loxandrina, Loxandrus LeConte, p. 385

4 (1') Elytron with internal plica near apex Pterostichina, Pterostichus (sensu lato), p. 384
4' Elytron without internal plica near apex .. 5

5 (4') Anterior tibia externally canaliculate and male aedeagus basally melanistic Glyptolenus Bates, p. 384
5' Anterior tibia not canaliculate; male aedeagus melanistic or not 6

6 (5) Tarsomere 4 of anterior tarsus emarginate; male aedeagus melanistic (except in some depigmented species); head not constricted behind eyes Agonum Bonelli, p. 384
6' Tarsomere 4 of anterior tarsus lobate; male aedeagus not melanistic; head somewhat constricted behind eyes Platynus Bonelli, p. 384

SUBTRIBE AGONINA (=ANCHOMENINA; =PLATYNINA)

This is a markedly diverse group of predominantly temperate distribution. As discussed above, some authors prefer to consider the Agonina as a tribe distinct from the Pterostichini, but recent studies indicate close relationship to the extent they must be considered as members of the same tribe.

Whitehead & Ball (1975), considering the agonines as a subtribe of Pterostichini, separate the Agonini (in the old sense) in three subtribes, the Agonina, Sphodrina, and Pristosiina. The Sphodrina include mainly troglobites, and are restricted to the Holarctic Region and New Zealand. Barr originally described the genus Mexispodrus (Barr, 1965:66) as a Neotropical representative of the Sphodrina, but later concluded that the genus is better placed among the true Agonina (Barr, 1970, 1973).

The Agonina have numerous tropical representatives. The group is not well understood, and only in a few recent papers has Whitehead started to settle the status of the Mexican (and other Neotropical) species. The neotropical species are very inadequately known, their immature
stages not at all.

Platynus (sensu lato) Bonelli, 1810. Whitehead (1973) studied the Mexican species formerly placed in *Colpodes* and *Agonum* (as well as in other smaller genera), and resurrected *Platynus* Bonelli from synonymy with *Agonum* Bonelli, 1810, for the Mexican forms. Nonetheless, classification of Mexican *Platynus* is far from settled, much less that of other Neotropical species; according to Whitehead (*l.c.*, 214) there are more than 100 undescribed species from México. Presently, it is the largest genus in the West Indies with 55 species recorded.

Agonum Bonelli, 1810. Also a highly diverse, cosmopolitan genus, predominantly in temperate areas. Possibly it is not in the Neotropical Region; subgenera and species groups are numerous in other faunas. Excluding *Rhadine, Hemiplatynus, Stenoplatynus* and *Platynella*, (see *Platynus*, above) from *Agonum*, there remain only species placed in *Agonum* (sensu stricto): five evidently Nearctic species which reach into México and the Antilles, as well as 37 species which occur in México (nine) and the Antilles (one), as also in South America-Chile (nine), tropical parts (18), of the latter six in Brazil. Of the subgenus *Anchomenus* Bonelli, (also a predominately temperate group), there are four Nearctic species which also occur in México and the Antilles, three exclusively Mexican and two from Colombia.

Glyptolenus Bates, 1878 (=*Glyptoglenus* Bertkau, 1878). Originally a predominantly Central American genus, *Glyptolenus* was recently studied by Whitehead (1974), who included in it several species formerly placed in *Colpodes* or *Platynus*, and which now includes 17 species, predominantly South American, of which six are recorded from Brazil, one from Jamaica and two from the Lesser Antilles.

SUBTRIBE EUCHROINA

A small Neotropical subtribe (which also includes the Australian *Setalis* Laporte) of metallic-colored adults, some of large size. Four genera are currently placed in this subtribe.

Dyschromus Chaudoir, 1835. Restricted to México (five species) and the Antilles (five species).

SUBTRIBE PTEROSTICHINA

This subtribe, which includes most genera and species of Pterostichini, is taxonomically complex and not understood. One of the great problems is the highly diverse, worldwide genus *Pterostichus* Bonelli, with many subgenera (frequently considered genera, e.g. by Straneo (1979), who considers some the Neotropical subgenera as genera, and excludes *Pterostichus* from the Neotropical Region).

Pterostichus Bonelli, 1810. This is a very large Holarctic genus, comprised of many subgenera and species groups. Species of *Pterostichus s. str.* may or may not occur in the West Indies. Two are listed as such, one of which is a *Poecilus* species and the other may be incorrectly assigned to this genus.

SUBTRIBE CAELOSTOMINA

Caelostomus MacLeay, 1825. This predominately African and Oriental genus is represented in the West Indies by a single introduced species, *C. punctifrons* Chaudoir, from
Carabid Beetles of the West Indies

West Africa.

SUBTRIBE LOXANDRINA

Loxandrus LeConte, 1852 (= *Megalostylus* Chaudoir, nec Schoenherr). This predominantly Nearctic/Neotropical genus is also represented in Australia (see Lindroth, 1966:537). In the Neotropical Region, there are 77 described species, predominantly South American. Allen (1972) revised the North American and Mexican species. Allen and Ball (1980) rerevised the Mexican species. Seven species have been recorded from the West Indies.

SUPERTRIBE PANAGAEIFITAE

This supertribe has several tribes, some well delimited, but others not. Taxonomy at the higher levels is necessary and would likely be a rewarding project. Only one tribe occurs in the West Indies.

TRIBE PANAGAEINI

A tribe of worldwide distribution with 17 genera (Csiki, 1929:347). In the New World there are five genera, of which two are in the West Indies.

Nothing is known about the habits and way of life of the South American species. Immature stages have been described for Old World species only (van Emden, 1942:45-46). Both genera of the West Indies have been collected at lights at nights.

Key to Genera of West Indian Panagaeini

1 Elytra concolorous, black. Lateral margins of pronotum with long spines
 ... *Coptia* Brullé, p. 385
1' Elytra bicolored black and orange. Lateral margins of pronotum regularly curved
 .. *Panagaeus* Latreille, p. 385

Coptia Brullé, 1835b. This genus includes four species: two described from the Antilles, and two described from mainland localities of the Neotropical Region. For a key to the species, see Reichardt (1971b). Members of a mainland species, *C. armata* Laporte, inhabit palm forests, where adults are found in wet places, under fallen palm fronds.

Panagaeus (sensu lato) Latreille, 1804. This is essentially a Holarctic genus, with six Palearctic species (subgenus *Panagaeus*, sensu stricto) and six described from the Americas (subgenus *Hologaeus* Ogueta). Of the described species of subgenus *Hologaeus*, three are known from the United States; one from the Antilles; México has two species (one shared with the southwestern United States, one with the Antilles); and one species *P. panamensis* Laferté-Sénéctère, is known from Panama and Ecuador. One undescribed species is known from southeastern Texas and Chiapas, México (Ball, in litt.). Members of these species occur in open areas, such as open woodlands, natural grasslands, and pastures.

Quaest. Ent., 1984, 20 (4)
SUPERTRIBE CALLISTITAE

This supertribe has several tribes, some well delimited, but others not. Taxonomy at the higher levels is necessary and would likely be a rewarding project. Three tribes occur in the West Indies.

TRIBE CALLISTINI

A very homogeneous group of Carabidae, frequently united with the Oodini. Here, Lindroth (1969a:969) is followed by ranking callistines as a tribe, especially because the Oodini themselves appear to represent a heterogeneous group. Van Emden (1942:43-44), who described Old World larvae, considered the Oodina a subtribe of ‘Chlaeniini’.

Callistini are widely distributed in the Old World, in tropical and in temperate areas. The taxonomic treatment has varied much with authors. Chaudoir (1876a) placed most species in Chlaenius; recent authors of the “french school” have split the group. Basilewsky (1953:119), considering it a subfamily (as Callistinae), reached the extreme of recognizing 10 tribes and numerous genera.

The Neotropical fauna is small, as already mentioned by Chaudoir (1876a:6-7) and has been taxonomically neglected; most authors included the species in Chlaenius Bonelli, in the subgenera Chlaenius (sensu stricto) and Eurydactylus Laferté-Sénéctère. At present, only the former, with seven species, is known to occur in the West Indies, although Davidson (in litt.) informs us that for the present, one of those species must be listed in Aulacosomus.

Key to Subgenera of Neotropical Chlaenius

1 Pronotum with single seta at each posterior angle Chlaenius (sensu stricto), p. 386
1’ Pronotum with four or more setae along each lateral margin Eurydactylus Laferté-Sénéctère, p. 386

Eurydactylus Laferté-Sénéctère, 1851 (=Glyptoderus Laferté-Sénéctère), apparently restricted to the New World, with a single species, Chlaenius menevillei Chaudoir, recorded from Panamá and Bolivia.

Chlaenius Bonelli, 1810 (with numerous synonyms in other faunas), includes numerous New World species, of which six are known from the West Indies.

Aulacosomus Grundmann, 1955, a new proposed genus for Chlaenius gundlachi Chaudoir, but done so on the principle of splitting.

TRIBE OODINI

This is a moderately divergent, but small, tribe with species distribution mostly in temperate zones of the World, but also occurring in the tropics in both Old and New Worlds. The Oodini frequently have been united with the preceding tribe (e.g. Ball, 1960:151). Considering, however, the heterogeneity within the Oodini, it seems more realistic to consider it as an independent tribe, with perhaps two or more subtribes. Lindroth (1969a:995) writes, “there is no doubt, confirmed also on larval characters, that this group is related to Chlaeniini…”, and he considers the group a distinct tribe, as has also been done by Erwin (1974c:184) for certain
exotic Oodini.

At the generic and specific level, the “Oodides” were monographed in a posthumous work of Chaudoir (1882a, 1882b). In this work, there was no inclusion of keys to genera, only characterizations of the latter and placement of the species in different groupings.

Very little is known about the Neotropical species of Oodini. Members of the tribe live in swamps and marshes, along water courses, and on the forest floor, in leaf litter, in the lowlands. Larvae are known for few exotic species (van Emden, 1942:43-44).

Key to Genera and Subgenera of West Indian Oodini

1 Clypeus with pair of setigerous punctures antero-laterally 2
1' Clypeus without setigerous punctures .. 3

2 (2) Labrum with three setae along anterior margin Anatrichis, subgenus Oodinus Motschulsky, p. 387

2' Labrum with six (or five) setae along anterior margin Oodes Bonelli, p. 387

3 (1') Labrum with six setae along anterior margin. Size small, length of body ca. 7.0 mm Anatrichis (sensu stricto) LeConte, p. 387

3' Labrum with three setae along anterior margins. Size various, but length of body not less than 9.0 mm Stenocrepis Chaudoir, p. 387

Oodes Bonelli, 1810. This is a moderately diverse and probable polyphyletic genus, with species in most zoogeographic regions. The New World fauna is small; three species occur in the United States, and possibly three in the Neotropical Region, one of which was recorded from the West Indies.

Stenocrepis (sensu lato) Chaudoir, 1857. This is a moderately diverse temperate-tropical New World endemic genus, with Nearctic, Middle, and South American species. Members are associated with streams, large rivers, and in marshes in open areas. The species are arranged in three subgenera, with seven species recorded from the West Indies:

Stenocrepis (sensu stricto). This subgenus includes 16 Neotropical species which range from Mexico and the West Indies to Brazil.

Stenous Chaudoir, 1857. The distribution pattern is similar to that of Stenocrepis, with 12 species.

Crossocrepis Chaudoir, 1857. This subgenus includes two species: one in México, and one in the West Indies.

Anatrichis (sensu lato) LeConte, 1853. This genus includes seven Neotropical species, whose collective ranges extend from Brazil to northern México. The species are arrayed in two subgenera, Oodinus Motschulsky and Oodiellus Chaudoir, at present. Possibly, these groups should be ranked as genera. Two species have been recorded from the West Indies.

TRIBE LICININI

This is a moderately diverse and divergent tribe, distributed in all of the major zoogeographical regions of the world, each region with one or more endemic genera. In the New World, the group is represented by two elements: a Holarctic temperate-tropical component, including Diplocheila Brullé, Dicaelus Bonelli, and Badister Clairville; and a southern hemisphere component represented by Eutogeneius Solier. Ball (1959) revised the Nearctic

Quaest. Ent., 1984, 20 (4)
species, providing a firm foundation on which to study the world fauna.

Diplocheila Brullé, 1834a. This wide-ranging Megagean genus is represented in the New World by the endemic *straitopunctata* group of subgenus *Isorembus* Jeannel. Of the eight Nearctic species, one, *D. major* LeConte, inhabits also the northern fringe of the Neotropical Region, but only on the island of Cuba.

SUPERTRIBE HARPALITAE

This supertribe contains at present only the following tribe.

TRIBE HARPALINI

This is one of the more highly diverse tribes of the family (as are Pterostichini and Lebiini), and also much in need of taxonomic revision. Although the tribe seems not well represented in the South American tropics, species of some genera are numerous. Some genera, as in the stenolophines, are more diverse and divergent in the Palaeartic areas, and for these groups South America is zoogeographically marginal.

The supra-generic classification is not yet settled. A first attempt at a reclassification was that of van Emden (1953a), which was followed later by various authors. Noonan (1973) revised the genera of Anisodactylina, and in 1976, he presented a synopsis of the genera of Harpalini of the world, grouping them in four subtribes. This scheme is used here, though it is recognized that some of the subtribes may not be monophyletic.

Little is known about life histories and immature stages of Neotropical species. Van Emden (1942:39-43) described larvae of *Anisotarsus* (at present considered a subgenus of *Notiobia*), *Trichopselapus*, *Barysomus*, and *Acupalpus*. Nègre (1963:210) refers to larvae of *Polpochila* (described by Chu, 1945).

Key to Subtribes of West Indian Harpalini

1 Penultimate labial palpomere bi- or trisetose Stenolophina, p. 388
1′ Penultimate labial palpomere plurisetose Harpalina, p. 389

SUBTRIBE STENOLOPHINA (=CRATOCARINA, BRADYCELLINA OF AUTHORS)

A subtribe of more temperate distribution, and represented in the tropics by only a few genera. Noonan (1976) gave the tribe a new definition, including in it elements of various different groups.

Key to Genera of West Indian Stenolophina

1 Mentum with tooth .. 2
1′ Mentum without tooth ... 3
2 (1) Head with frontal impressions deep, long, extended posteriorly of hind margin of eye; elytron without sutural interneur; pronotum with posterior margin with complete transverse groove *Pogonodaptus* Horn, p. 389
2′ Head with frontal impression shallower, shorter; if extended laterad,
Carabid Beetles of the West Indies 389

groove terminated near front margin of eye .. Bradycellus Erichson, p. 389

3 (1') Elytron with posterior series of umbilicate punctures not divided into two
groups of four punctures each .. Acupalpus Latreille, p. 389

3' Elytron with posterior series of umbilicate punctures divided into two
groups of four punctures each .. Stenolophus Stephens, p. 389

Bradycellus (sensu lato) Erichson, 1837 (= Acupalpus Thomson, not Latreille). Of the
eight subgenera cited by Ball (1960:86), only two have Neotropical representatives. However,
the species are not well understood, and many remain to be described. Further work might
reveal previously unrecognized species groups. Four species have been recorded in the West
Indies.

Acupalpus Latreille, 1829. A markedly diverse, worldwide genus, whose species are
arranged in several subgenera. The Neotropical species (including those of West Indies) have
not been properly studied, and their subgeneric position is uncertain. Two species have been
recorded in the West Indies.

Stenolophus Stephens, 1827. Also a markedly diverse, worldwide genus. Csiki (1932a:1259)
considered it to be a subgenus of Acupalpus: more recent authors give it generic rank. Thirteen
described Neotropical species are included, distributed from Middle to South America, but
only two of these have been recorded in the West Indies.

Pogonodaptus Horn, 1881. A genus with only three species, one ranging from Central
America to Texas, one in Panamá, and one in Haiti. At least two of these species live in
marshes and swamps.

SUBTRIBE HARPALINA

This is the most diverse of the harpaline subtribes, and also the most diverse of the
Neotropical groups. According to van Emden (1958), only the Selenophori, whose males have
the ostium of the aedeagus located dorsally, are represented in South America. Noonan (1976)
places the Neotropical genera in two groups, the Selenophori and the Amblystomi.

Key to Genera of West Indian Harpalina

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elytron with interneurs 2, 5, and 7 impunctate</td>
<td>Harpalus Latreille</td>
</tr>
<tr>
<td>1'</td>
<td>Elytron with at least interner 2 with several small setigerous punctures</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Elytron with interner 7 impunctate on discal portion, interner 5 with or without setigerous punctures</td>
<td>Stenomorphus Dejean, p. 390</td>
</tr>
<tr>
<td>2'</td>
<td>Elytron with setigerous punctures in interneurs 2, 5, and 7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Head enlarged, clypeus with anterior margin distinctly concave, basal membrane of labrum narrowly exposed; elytra iridescent</td>
<td>Amblygnathus Dejean, p. 390</td>
</tr>
<tr>
<td>3'</td>
<td>Head average, anterior margin of clypeus straight or only very slightly concave; luster of elytra various, iridescent or not</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Elytral intervals more or less densely setigerously punctate, or rugulose</td>
<td>Athrostictus Bates, p. 390</td>
</tr>
<tr>
<td>4'</td>
<td>Elytral intervals impunctate, smooth</td>
<td>Selenophorus Dejean, p. 390</td>
</tr>
</tbody>
</table>

Quaest. Ent., 1984, 20 (4)
The Harpali Group

Primarily a Megagean group with two genera represented in México, but not in the Neotropical Region. Of these, Euryderus LeConte, a monobasic genus, containing E. grossus Say, is known in México only from northern Sonora. Harpalus Latreille is represented in the deserts and mountains of northern México, in the Trans-Volcanic Sierra, and in the mountains of Oaxaca. About 15 species are in Mexico, several of which are undescribed. The group in México is maximally diverse and divergent in the Sierra Madre Occidental. One species of Harpalus is known from the West Indies, but in light of the above this species may be mis-assigned.

The Selenophori Group

Selenophorus Dejean, 1829 (=Gynandropus Dejean; =Hemisopalus Casey; =Cellamorphus Casey; =Selenalius Casey). A markedly diverse Nearctic and Neotropical genus, much in need of revision. Nearctic species were arrayed in subgenera by Casey (1914b); Noonan (MS) synonymized Gynandropus. In the Neotropics there are 142 described species, of which 28 are known from the West Indies; the 'group' Gynandropus Dejean has 12 species in Middle and South America, two of which are known from the West Indies. The species of the genus inhabit a wide variety of habitats, such as grassland and deserts. A few species are synanthropic occurring in tropical gardens, yards, and under sidewalks.

Amblygnathus Dejean, 1829. A genus comprising about 20 species (nine described) from the West Indies (one species), Middle America, and northern South America. Mexican members inhabit the environs of Sagittaria and Typha marshes. The group is close to Selenophorus, and perhaps should be treated as a subgenus.

Aethrostictus Bates, 1878 (=Arthrostictus auct.). This is a moderately divergent group, with some 16 species, one of which is known from the West Indies. The species inhabit lowlands; in México and Central America, individuals are found in drier, open forests. Some are synanthropic.

Stenomorphus Dejean, 1831 (=Agaosoma Ménétries). Revised by Darlington (1936), it comprises 10 species, most of which are in mainland Middle and northern South America. Two species (S. manni Darlington and S. cubanus Darlington) occur in the West Indies.

SUPERTRIBE DRYPTITAE

This supertribe has three tribes, Dryptini, Zuphiini, and Galeritini, all of which are circumtropical and partially temperate as well. One species of dryptine has been found in the Amazon Basin, the only member of the tribe in the New World. Both of the other two tribes have numerous species in the western hemisphere, including the West Indies.

TRIBE ZUPHIINI

As delimited in Csiki (1932b:1562-1571), this is a very heterogeneous tribe. Planetes MacLeay belongs in the Galeritini; the Neotropical species of Polystichus Bonelli actually belong to a distinct genus, Dailodontus Reiche, which together with Helluomorpha Laporte has been removed to Helluonini (Reichardt, 1974b). Pseudaptinus Laporte, Thalpius LeConte, and Mischocephalus Chaudoir, have been transfered from "Dryptini" to Zuphiini (Reichardt, 1972b), and Metaxidius Chaudoir, placed traditionally among the Helluonini, actually belongs
in the Zuphiini (Reichardt, 1972b:265).

Adult zuphiines are small-sized carabids, which apparently live in humus. Only Old World larvae are known.

Of the three known subtribes, only the Leleupidiina are not represented in the Neotropics. The tribe is worldwide in distribution, but is apparently predominant in the New World.

Key to Subtribes and Genera of West Indian Zuphiini

1 Maxillary palpomeres similar to labial palpomere Zuphiina, Zuphium Latreille, p. 391
1’ Maxillary palpomeres long and thick, with large terminal article; labial palpomeres short and thin, with small apical article Patriziina 2
2 (1’) Pronotum without spine or sharp basal angles Pseudaptinus Laporte, p. 391
2’ Pronotum with sharp basal angles Thalpius LeConte, p. 391

SUBTRIBE PATRIZIINA

This subtribe is composed of two genera with a total of 11 species known from the West Indies.

Pseudaptinus Laporte, 1835 (=Diaphorus Dejean). Exclusively American, with a few species in the United States, and a total of 16 Neotropical species. Liebke (1934:372-388) presented a key to the species (including Thalpius).

Thalpius LeConte, 1851 (=Enaphorus LeConte; =Zuphiosoma Laporte). Frequently considered a subgenus of Pseudaptinus, Thalpius has a disjunct distribution, with one Australian species (for which Laporte proposed the genus Zuphiosoma), and the remaining species in the New World, ranging from the southern United States to Argentina, including the West Indies.

SUBTRIBE ZUPHIINA

Zuphium Latreille, 1806 (=Zophium Gistl; =Zoyphium Motschulsky). A genus with pantropical distribution, including Australia (56 species in the Old World, according to Csiki, 1932b:1562). In the New World, the genus ranges from the United States to Argentina, 20 Neotropical species being known of which only four are recorded from the West Indies. Identification of the species is difficult in spite of Liebke's key (1933:461-463). Mateu has studied the genus and revisions have started to appear (Mateu, 1981).

TRIBE GALERITINI

This is a moderately diverse, pantropical tribe. It was segregated from the Dryptini by Jeannel (1949:1057), but this action was not accepted by all recent authors (Darlington, 1971, uses Dryptini in the old sense).

The Western Hemisphere Galeritini were studied by Reichardt (1967). In this hemisphere, the tribe is predominantly Neotropical, only the subgenus Progaleritina occurring as far north as southern Canada. Eight species of Galerita are known from the West Indies.

Quaest. Ent., 1984, 20 (4)
Larvae of Neotropical forms (van Emden, 1942: 51-52, 80) are very active, having been captured in forests, usually under leaves or stones. Reichardt (1971a) recorded “bombarding” habits in Galerita corumbana Liebke; the same habit was more recently observed in Galerita collaris Dejean. Galerita occidentalis (Olivier), however, does not show this habit.

Basilewsky (1963: 23), considered the group as a subfamily, and arranged the species in two tribes. Both groups are represented in the Neotropics, but only Galerita has been found in the West Indies.

Key to Subgenera of West Indian Galeritini

1 Elytron with flat or evenly convex intervals Progaleritina Jeannel
1' Elytron with costate or multicarinate intervals Galerita Fabricius

SUPERTRIBE CTENODACTYLITAE

At present this supertribe includes the Old World Hexagoniini and the New World Ctenodactylini and Calophaeniini (Stork, pers. comm.), however the taxonomy is inadequate and needs complete revision on a worldwide basis. There are still parts of Odacanthini that belong here according to Stork (in litt.).

TRIBE CTENODACTYLINI

Delimitation of this small tribe of carabids has been relatively difficult, especially because of the confusion created by Liebke, who in a final revision of the group (1938) fused the Ctenodactylini and Odacanthini, as well as other groups which are actually unrelated (see also comments under Odacanthini and Lachnophorini).

Liebke (1928a and 1928b) revised this “subfamily”, describing new genera and species. Later (1931), he presented a new key for identification of genera and descriptions of new genera and species. Finally, in the 1938 revision, the group was revised on a worldwide basis.

The tribe, as considered here, is predominantly Neotropical, but some genera may occur in the Old World, having been placed by Jeannel (1948: 759) in the Hexagoniini.

Practically nothing is published about way of life of the Neotropical species, however, they are usually collected at lights and by sweeping emergent vegetation or stands of Heliconia-like broad leaf plants; adults are also semi-arboreal in low vegetation at the edge of water bodies. Larvae are known to pupate in the hollow culms of grasses. Van Emden (1942: 51) described the larva of Leptotrichelus.

Identification, even of genera, is presently difficult, and it is probable that many of Liebke’s genera will not survive a careful study.

Leptotrichelus Latreille, 1829 (= Rhagocrepis Eschscholtz; = Odacantha Perty; = Sphaeracra Say). With 32 Neotropical species, of which only one is from the West Indies.

SUPERTRIBE LEBIITAE

This supertribe approaches the pterostichites in size and diversity; however, recent studies by Ball (1975, 1983), Ball and Shpeley (1983), and Ball and Hilchie (1983) have begun to clear the complexities of earlier classifications. The arrangements of taxa presented here is
based on Erwin (1985) and is somewhat provisional, however all the groups included have highly developed bilateral turrets as a means of delivery for their chemical defence.

TRIBE PERIGONINI

This is a tribe of very few species included in four genera (Csiki, 1931:894-899), of which three are Neotropical, and Perigona Laporte, 1835, which is worldwide in distribution, with nearly 80 species. Jeannel (1942a:577) considered the tribe as a subfamily of Perigonidae, together with Anconoderinae, Omphreinae, and Lachnophorinae. Because of the structure of the defence mechanism, Erwin (1979, 1984) regarded this group as part of the Lebiitae.

Adults and larvae of Perigona live under bark of wet trees and in decaying leaf litter at low and middle altitudes. Many adults are attracted to fermenting sap and pulp of pithy tree species (especially certain palms). During dry season, adults of Perigona and Diploharpus are found in deep leaf piles beneath crowns of fallen trees. Mizotrechus members are found under deeply embedded stones in cloud forests at middle elevations and have been repeatedly taken in light traps in Panama.

Perigona Laporte, 1835. Jeannel (1951) included the Neotropical species in Perigona s. str., together with other species from the Old World tropics. Five species have been recorded from the West Indies.

TRIBE LACHNOPHORINI

This is a weakly characterized group of still uncertain position and constitution and in some ways is linked to Agonini via genus Anchonoderus. However, Liebherr (1983) showed that female genitalia are more lebiine-like than agonine-like. Several of the lachnophorine genera were included in Colliurini by Liebke (1938). Jeannel (1942a:577) included Lachnophorini, together with Anconoderini, both as subfamilies, in Perigonidae. Later (1948:742) he erected the family Lachnophoridae for the two subfamilies. For his Lachnophoritae, Jeannel erected two tribes, Lachnophorini and Selinini, based on misinterpretation of the terminal article of the maxillary palps, as discussed by Reichardt (1975).

Ball (1960:136, 137) considered Anchonoderini and Lachnophorini distinct tribes. Lindroth (1966:422) united Anconoderini and Agonini, retaining them as a subtribe of Pterostichini, and considered Lachnophorini as a distinct tribe (Lindroth, 1969:xxii). Whitehead & Ball (1975:595) considered Lachnophorina a subtribe of Pterostichini. Recently, Ball and Hilchie (1983) have concluded that the generic complex centered around Eucaerus belongs to this subtribe and this was substantiated by Liebherr (1983).

Immature stages of Neotropical species are unknown, however, Liebherr (1983) has amply described the larva of Chalybe sallei. Most species are riparian, living on river beaches, and others live in clearings in lowland and upland forests, including the red lateritic clays thrown up by leaf-cutter ants of the genus Atta. Adults seem to be good flyers and are frequently collected at light.

Key to Genera of West Indian Lachnophorini

1 Body densely pubescent or setiferous .. 2
1' Body glabrous (except for usual fixed setae) ... Eucaerus LeConte, p. 394

Quaest. Ent., 1984, 20 (4)
2 (1) Maxillary palp with ultimate article nearly filiform, apically truncate

Anchonoderus Reiche, p. 394

2' Maxillary palp with ultimate article fusiform or ovoid and apically subulate

3 (2') Apical palpmeres fusiform; integument black; dorsal setae erect, sparse, some as long as scape

Euphorticus Horn, p. 394

3' Apical palpmeres ovoid, apically subulate and pointed; integument pale; dorsal surface densely pubescent with several thick and long black setae

Lachnophorus Dejean, p. 394

Anchonoderus Reiche, 1843. With 24 Neotropical species, of which only two are known from the West Indies. Its systematic position has also been discussed by a variety of authors.

Lachnophorus (sensu lato) Dejean, 1831 (=Stigmaphorus Motschulsky, 1862). Liebke (1936) recognized three subgenera, and presented keys to species. One species has been recorded from the West Indies.

Euphorticus Horn, 1881. The range of this genus extends from northwestern South America to southern United States. One species has been recorded from the West Indies.

Eucaerus LeConte, 1853. With 11 Neotropical species, of which eight are known from Brazil. One species occurs in southern United States. Two species have been described from the West Indies by Darlington.

TRIBE CYCLOSOMINI (=TETRAGONODERINI; MASOREINI AUCT., in part)

The name Tetragonoderini is a junior synonym of Cyclosomini, recent usage to the contrary notwithstanding. This tribe is pantropical, and is most speciose in Africa and South America. This tribe and the Masoreini seem to be closely related, and Jeannel (1949) and Ball (1983) combined the two as a single group. Only one genus of Cyclosomini is known from the New World.

Tetragonoderus Dejean, 1829. (=Peronoscelis Chaudoir). This genus is pan-tropical, ranging in the New World from Chile to southeastern Ontario, in Canada. Adults live among dry leaves, on sand, along water courses. Many adults are taken at light, at night. Although only one species has been reported from the West Indies (Bahamas), at least two others occur in the Greater Antilles.

TRIBE MASOREINI (=ANAULACINI)

Like the Cyclosomini, the limits of this pan-tropical tribe are not clear. Ball (1983) defines the problems that must be solved to clarify limits of the group and ranks of included taxa.

Key to Genera of West Indian Masoreini

1 Pronotum with base narrowed, sides markedly but evenly constricted posteriorly. Microsculpture of elytron with meshes only slightly elongate, nearly isodiametric, surface dull

Aephnidius MacLeay, p. 395

1' Pronotum with base wide, only slightly narrower than maximum width. Elytron with microsculpture meshes elongate, surface iridescent

Macracanthus Chaudoir, p. 395
Macracanthus Chaudoir, 1846a (=Masoreus, in part, auct.). The species of this endemic New World group seem to be related to those of the Old World genus Anaulacus MacLeay. In fact, these groups may be congeneric. Six species are known from the Neotropical Region, only one of which, M. brevicillus (Chevrolat) is known from the Greater Antilles.

Aephnidius MacLeay, 1825: 33 (=Masoreus in part, auct.). This is a pantropical group, comprising of 16 described species, of which two are known from the Neotropical Region. One of these, A. ciliatus Mutchler, occurs in the Greater Antilles, only.

TRIBE PENTAGONICINI

This tribe is of cosmopolitan distribution, but with predominance in Asia, southeast Asian islands, and Australia-New Zealand. Two genera are endemic to Australia and New Zealand; Scopodes Erichson and Actenonyx White. All remaining species, including the Neotropical ones, are included in Pentagonica Schmidt-Goebel (=Rhombodera Reiche, nec Burmeister; =Didetus LeConte).

Liebke (1939a:129) described a monobasic genus, Thoasia, which he placed in Pentagonicini in spite of bilobed tarsomere 4 and pectinate claws (bilobed and smooth claws characterize pentagonicine adults). Reichardt (1968:147) maintained the genus in that tribe, but it seems now that its correct position is in Lebiini.

Reichardt (1968) published a preliminary revision of the New World species, of which 27 are recorded from the Neotropical Region, five from the West Indies.

Larvae and habits of Pentagonica members are unknown. Moore (1965:161-162, fig. 8-9) described the larva of Scopodes simplex. According to Moore, larval characteristics indicate relationship between Pentagonicini and Odacanthini.

TRIBE ODACANTHINI (=COLLIURINI)

A tribe of small, predaceous carabids, usually found inhabiting forests and marshes, or river banks, and world-wide in distribution. Liebke (1930) revised the American species of the tribe and later (1938), the world fauna, however, including in it the Ctenodactylini (an action already made by Csiki, 1932b:1517-1547). Here more recent authors are followed, who consider the Odacanthini as distinct from Ctenodactylini. Van Emden (1942:51), who described Old World larvae, also united the two tribes in one.

Excluding Ctenodactylini, the tribe is of limited diversity, with a large cosmopolitan genus, Colliuris Degeer, and another 15 less diverse genera. Only three are known from the Neotropical Region, and the species of Colliuris are arranged in many subgenera.

Colliuris (sensu lato) Degeer, 1774 (=Casnonia Latreille & Dejean; =Ophionea Klug). A worldwide genus, with about 100 Neotropical species, seven of which occur in the West Indies. Adults of all species are small, winged, and most live in forests on vegetation, or in marshes. In two revisions, Liebke (1930, 1938) recognized many subgenera, most of which will probably have to be suppressed when they are better studied.

TRIBE LEBIINI

This is a markedly diverse tribe, especially numerous in the tropics, with some genera, such as Lebia, Agra, and Calleida, with hundreds of species. About 60 genera with nearly 1,000
species are known already from the Neotropical Region; no doubt these are provisional numbers. Recent revisions show that the number of undescribed species is extensive.

Because of its diversity, the taxonomic state of the tribe in some areas is chaotic, especially because it has not been studied as a whole in the Neotropics. Even the suprageneric classification is not yet definitely established. Most groupings have been proposed for restricted faunas, e.g. for France (Jeannel, 1942a); Madagascar (Jeannel, 1949); Africa (Basilewsky, 1953); United States (Ball, 1960); Japan (Habu, 1967); and Canada (Lindroth, 1969a). Unfortunately there is no generally accepted system. The Neotropical genera deviate in certain characters, and do not fit easily into other systems. Many genera are monobasic, and have not been re-studied in recent years. Other genera, like those of the Calleidina, proposed by Liebke, are probably not natural, and are based on characters of difficult verification (mostly mouthparts).

Ball's recent revisions of the subtribe Pericalina (1975), “Euchelini” (and Shpeley, 1983), and Cymindina (and Hilchie, 1983), clearly show the previous chaotic state of the tribe. In Ball's sense, this subtribe includes groups such as the Mormolycini and other groups segregated by Jeannel.

It also seems better to include here, even though provisionally, the genus Nemotarsus, which has been variously placed in Masoreini by several authors, but has been returned to Lebiini by Ball (1960:157). The whole suprageneric system used here, however, is to be considered provisional. Many of the genera are placed in certain subtribes only because they have been placed there in catalogs (Csiki, 1932b). Their final position depend on future studies.

Patterns of life of members of Lebiini are most interesting, but little is known about the Neotropical representatives of the tribe. Adults are normally diurnal, brightly colored, frequently with metallic colors. Most members are small, but a few are relatively large (adults of Agra and Chelonodema, for example). Representatives of Agra, Lebia, and Calleida are planticolous, living on herbs, shrubs and trees, and even on flowers; Lebia species (adults and larvae) are frequently associated with species of Chrysomelidae. Larvae of species of Lebia are ectoparasitoids on pupae of Chrysomelidae. Larvae and adults of species of Calleida are predators, some specialized on caterpillars of Noctuidae and Pyralidae. Cymindis and some Apenes adults are nocturnal, xerophytic species of sandy areas and sparse vegetation, and during the day, they hide under stones and under layers of vegetation. Van Emden (1942:47-51) described larvae of some genera, but very few from the Neotropical Region.

Key to Subtribes of West Indian Lebiini

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Subtribe Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ventral surface of head behind mentum with one or more pairs of “suborbital” setigerous punctures, each seta about as long as supraorbital setae</td>
<td>2</td>
</tr>
<tr>
<td>1'</td>
<td>Ventral surface of head without suborbital setae</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Antennomeres 5 to 11 each with ventral pit with many short sensory setae</td>
<td>Calleidina, Euproctinus Leng and Mutchler, p. 399</td>
</tr>
<tr>
<td>2'</td>
<td>Antennomeres without sensory pits</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Labrum elongate, at least as long as wide. Elytron with penultimate umbilicate puncture closer to margin than those adjacent; apex obliquely truncate</td>
<td>Pericalina, p. 397</td>
</tr>
<tr>
<td>3'</td>
<td>Labrum transverse, wider than long. Elytron with penultimate umbilicate</td>
<td></td>
</tr>
</tbody>
</table>
puncture same distance from margin as adjacent punctures; apex rounded

4 (2') Elytron with three umbilicate punctures at outer apical angle in form of triangle .. Lebiina, p. 399
4' Elytron with umbilicate punctures aligned linearly or nearly so 5
5 (4') Tarsomere 4 bilobed ... Calleidina, p. 398
5' Tarsomere 4 at most emarginate .. 6
6 (5') Total length less than 6.0 mm Dromiina, p. 397
6' Total length more than 6.0 mm Apenina, p. 397

SUBTRIBE APENINA

The subtribe was recently recognized by Ball (1983), and the genus-group taxa mostly at the generic level were revised by Ball and Hilchie (1983). One genus is represented in the Neotropical Region.

Apenes (sensu lato) LeConte, 1852. A genus of extensive distribution in the Western Hemisphere, but predominantly Neotropical where 60 species are known, with 14 of these occurring in the West Indies.

SUBTRIBE DROMIINA

The genera which constitute this subtribe are better represented in temperate than tropical zones. In the Neotropical Region, they are in México, Central America, the West Indies, and Chile. The classification is not well understood and there are only revisions of a few genera.

Key to Genera of West Indian Dromiina

1 Base of pronotum broadly lobed *Microlestes* Schmidt-Goebel, p. 397
1' Base of pronotum truncate *Apristus* Chaudoi, p. 397

Apristus Chaudoi, 1846b. A cosmopolitan genus, with five Middle American species and one from the West Indies.

Microlestes Schmidt-Goebel, 1846 (=*Blechrus* Motschulsky; =*Bomius* LeConte; =*Dromius* Sloane). A cosmopolitan genus, with many Nearctic species, but few in the Neotropics. Mateu (1974) studied the five Mexican species, some of which also occur in the United States; one species is also known from Cuba.

SUBTRIBE PERICALINA (=COPTODERINA, =CATASCOPINA, =THYREOPTERINA; INCLUDING MORMOLYCINI)

According to Ball (1975) in his revision of the subtribe, Pericalina includes some genera of previously uncertain position (like *Mormolyce* Hagenbach, in the past considered a distinct subfamily or tribe) and other genera previously distributed in different subtribes of Lebiini (or even other tribes, like Agonina of Pterostichini).

The Neotropical species are included mostly in endemic genera, some with a few species which range into southern United States. *Catascopus* and *Coptodera* are worldwide genera, with a few Neotropical representatives.

Quaest. Ent., 1984, 20 (4)
Little is known about habits of the Neotropical species; the only known larva apparently known is that of *Eurycoleus*, which preys on cryptogramivorous endomychids (Erwin and Erwin, 1976).

According to Ball (*ibid*), *Stenognathus chaudoiri* Ball was collected under bark of trees, together with adults of several species of *Coptodera*, in tropical mountain forests in México, at altitudes above 1,000m. *Ochropisus concolor* Ball and *Phloeoxena geniculata* Bates occur in similar habitats; several individuals of the former species were collected by fogging the tree crown of *Luehea seemannii* in low seasonal forest in Panamá (Erwin, pers. obs.). Mexican members of *Catascopus* were also found under bark of dead or partially dead trees. Adults of the Neotropical species of *Catascopus* seem to be nocturnal, while their Old World counterparts are diurnal. Adults of *Lelis* and adults and larvae of *Eurycoleus* are associated with fungi, on bark of trees.

Key to Genera of West Indian Pericalina

1 Mentum with median tooth ... 2

1' Mentum without median tooth *Coptodera* Dejean, p. 398

2 (1) Dorsal surface of body setulose. Pronotum with posterior margin lobulate

... *Somotrichus* Seidlitz, p. 398

2' Dorsal surface glabrous (with few long tactile setae, only). Pronotum with posterior margin truncate *Phloeoxena* Chaudoir, p. 398

Somotrichus Seidlitz, 1887. Monobasic, its single species is cosmopolitan, and has been recorded from Guadeloupe and Brazil in the Neotropical Region.

Phloeoxena (*sensu lato*) Chaudoir, 1869. With 16 species arrayed in three subgenera (Ball, 1975). Seven species are found in the West Indies.

Coptodera Dejean, 1825. According to Ball (1975), the Neotropical species belong to the nominotypical subgenus. There are about 40 South and Central American species, two of which are found in the West Indies.

SUBTRIBE LEBIDIINA (=GALERUDICIINA)

A group whose adults have a characteristic habitus, resembling galerucine chrysomelids. Distribution is discontinuous: the genus *Lebidia* Morawitz, 1862 includes species from northern India, Taiwan and Japan; *Galerucidia* includes Neotropical species. Habu (1967) includes *Lebidia* in Calleidina, without mentioning the separate status given this genus (together with *Galerucidia*) by most authors. Ball and Hilchie (1983) follow Habu in regarding this group as being related to the Calleidina, but study is needed before final placement can be determined.

Galerucidia Chaudoir, 1872a. With five Neotropical species, one of which is known from the West Indies.

SUBTRIBE CALLEIDINA (=CALLIDINA)

This is also a highly diverse subtribe of Lebiini (with 28 Neotropical genera), taxonomically complex in spite of a revision by Liebke (1935) who also provided a key to genera. Mateu (1954) commented about many of the mistakes in Liebke's revision, and others have also been noted by other authors.
Key to Genera of West Indian Calleidina

1 Head with one pair of suborbital setigerous punctures. Mentum without tooth *Euproctinus* Leng & Mutchler, p. 399
1' Head without suborbital setigerous punctures. Mentum with tooth 2

2 (1') Ligula with four apical setae. Tarsomere 4 deeply emarginate, but not bilobed *Plochionus* Latreille & Dejean, p. 399
2' Ligula with two apical setae *Calleida* Dejean, p. 399

Calleida Dejean, 1825 (=*Callida* auct.). A markedly diverse, cosmopolitan genus, with 171 Neotropical species, of which six are recorded from the West Indies. Chaudoir (1872b) revised the species known at the time, but many were described later, especially by Liebke. Some authors consider *Spongoloba* Chaudoir, 1872b congeneric with *Calleida*; others (Lindroth, 1969a:1058) consider it a subgenus, apparently restricted to Nearctic species. *Philophuga* Motschulsky, has also been considered a distinct genus, for two Nearctic species of México, but Lindroth (1969a) considers it a subgenus of *Calleida*.

Euproctinus Leng & Mutchler, 1927 (=*Euproctus* Solier, nec Gene; =*Andrewesella* Csiki). A Neotropical genus which ranges into United States. There are 17 Neotropical species, of which one has been recorded from the West Indies. This group should probably be placed in a separate subtribe.

Plochionus (sensu lato) Latreille & Dejean, 1824. With few species, mainly restricted to the Western Hemisphere, including two species from the West Indies.

SUBTRIBE LEBIINA

In number of species this is the most diverse subtribe (about 500), more than 450 in the cosmopolitan genus *Lebia* (sensu lato) alone. Chaudoir (1870, 1871a) monographed the group, arranging the species in several genera which are usually accepted by the “French school”. In a study of the Nearctic fauna, however, Madge (1967) placed most of Chaudoir’s generic names in synonymy. This concept has been accepted in more recent years, e.g. by Lindroth (1969a) and Reichardt (1972a).

The taxonomic position of the South American “genera” thus depends on further studies. *Cryptobatis*, *Alkestis*, *Hyboptera* and *Aspasiola* have been placed in Physoderina by Csiki (1932b:1946). Jeannel (1949:882) restructured the groups, and restricted Physoderina to Indo-Malayan species. It seems, however, that *Cryptobatis* and *Hyboptera* are true *Lebia*; *Alkestis* and *Aspasiola* are inadequately known genera, but should probably be placed here as well.

Lebia Latreille, 1802. Probably one of the largest genera of Carabidae, is of worldwide distribution, as has been seen above, and is also very numerous in the Neotropics. Only five species have been recorded in the West Indies, but surely this is from lack of collecting in their habitat or lack of study of collected material.

ACKNOWLEDGEMENTS

We greatly appreciate suggestions made by various of the revisors listed in Appendix B, and we thank the following people who helped us put together this paper: George L. Venable, for the drawings of *Bembidion darlingtoni* and map; Dora V. Rios for translating the abstract into

Quaest. Ent., 1984, 20 (4)
Spanish.

LITERATURE CITED

Bänninger, M. 1921. Vierter Beitrag zur Kenntnis der Carabinae. (Col.). *Gattung Omophron*. Entomologische Mitteilungen, 10: 112–120.

Bänninger, M. 1935. Uber alte und neue Formen der Subtr. Scaritini (Carab.).
Carabid Beetles of the West Indies

Quaest. Ent., 1984, 20 (4)
49–120.

Bruneau de Miré, B. 1952. Contribution a l’étude des Dyschiriinae (Col. Carabique) du Sahara

Casey, T. L. 1884a. Contributions to the descriptive and systematic coleopterology of North America, part I, 60 pp., illus.

Casey, T. L. 1884b. Ibid., part II, pp. 61–198.

Casey, T. L. 1914a. Some observations on the Carabidae, including a new subfamily. Ibid., 5: 25–44.

Casey, T. L. 1914b. A revision of the nearctic Harpalinae. Ibid., 5: 45–305.

Casey, T. L. 1924. Additions to the known Coleoptera of North America. Ibid., 11: 1–347.

Chaudoir, M. de. 1838. Tableau d’une nouvelle subdivision du genre Feronia Dejean suivi d’une caractéristique de trois nouveaux genres de carabiques. Ibid., 11: 3–32.

Chaudoir, M. de. 1850b. Mémoire sur la famille des carabiques. Ibid., 23: 349–360 (2e. partie, cont.)

Quaest. Ent., 1984, 20 (4)

Carabid Beetles of the West Indies

Chevrolat, L. A. A. 1836. Description d’un *Carabus* de Porto-Ricco [sic]. Magasin de Zoologie, 6, pl. 169.
Darlington, P. J., Jr. 1936. The species of *Stenomorphus* (Coleoptera: Carabidae), with data on heterogony in *S. californicus* (Mén). Pan-Pacific Entomologist, 12: 33–44.

Quaest. Ent., 1984, 20 (4)

Dokhtouroff, W. S. 1882. Spec. Cicindel., 1, p. 73 [from JUNK].

Emden, F. I. van. 1953b. The larva of *Morion* and its systematic position (Coleoptera:

Quaest. Ent., 1984, 20 (4)

entomologique de France, 1881, pp. 82–84.

Guérin-Méneville, F. E. 1845. (Note zur quelques coléoptères trouvés dans la racine de squine (Smilax chine)). Bulletin de la Societe entomologique de France, 1845, pp. xvi–xvii.

Hope, F. W. 1838. The coleopterist’s manual, part the second, containing the predaceous land and water beetles of Linneus and Fabricius, 168 pp., illus. London.

Kirby, W. 1937. Insects. Coleoptera. In, Richardson, Fauna Boreali-Americana; or the zoology of the northern parts of British America ..., 249 pp. Norwich.
Kult, K. 1947. The third study to the knowledge of tribus Clivinini (Col., Carab.). Casopis Ceskoslovenské Společnosti Entomologické, 44: 26–37.

Latreille, P. A. 1829. Les crustacés, les arachnides et les insectes, distribués en famille naturelles, ouvrage formant les tomes 4 et 5 de celui de M. le Baron Cuvier sur le Règne animal.
Carabid Beetles of the West Indies

Leng, C. W. and A. D. Mutchler. 1914. A preliminary list of the Coleoptera of the West Indies as recorded to January 1, 1914. Ibid., 33: 391–493.
Leng, C. W. and A. D. Mutchler. 1927. Supplement 191–1924 (inclusive) to catalogue of the Coleoptera of America, north of Mexico, 78 pp. Mount Vernon, N. Y.

Quaest. Ent., 1984, 20 (4)

MacLeay, W. S. 1825. Annulosa javanica or an attempt to illustrate the natural affinities and analogies of the insects collected in Java by T. Horsfield, 50 pp., 1 pl. London.

Carabid Beetles of the West Indies 417

Quaest. Ent., 1984, 20 (4)
Samouelle, G. 1819. The entomologist’s useful compendium, 496 pp. London.
Carabid Beetles of the West Indies

Stephens, J. F. 1827. Illustrations of British entomology; or a synopsis of indigenous insects: containing their generic and specific distinctions; with an account of their metamorphoses, times of appearance, localities, food, and economy, as far as practicable, London, vol. 1, pp. 1–76, pls. 1–5.

Westwood, J. O. 1838. An introduction to the modern classification of insects; founded on the natural habits and corresponding organization of the different families, 2 volumes, 462 + 587 pp. London.

APPENDIX A: CHECKLIST OF THE SPECIES OF THE WEST INDIES

I. CARABIDAE Latreille, 1810

Agridae Kirby 1837; Anchomenidae Laporte, 1834c; Anthiadae Hope, 1838; Apotomidae Jacquelin du Val, 1857; Bembidiidae Westwood, 1838; Brachinidae Bonelli, 1810; Broschidae Hope 1838; Callistidae Jeannel, 1941; Calpohaenidae Jeannel, 1942a; Chlaeniidae Westwood, 1838; Cnemacanthidae Lacordaire, 1854; Ctenodactylidae Laporte, 1834c; Cyclosomidae Hope, 1838; Cymbionotidae Jeannel, 1941; Dryptidae Laporte, 1834c; Elaphridae Stephens, 1827; Feronidae Laporte, 1834c; Gehringiidae Darlington, 1933; Glyptidae Horn, 1881; Harpalidae MacLeay, 1825; Hiletidae Lacordaire, 1854; Lebiidae Bonelli, 1810; Licindae Bonelli, 1810; Loroceridae Bonelli, 1810; Masoreidae Chaudoir, 1876b; Melanodidae Jeannel, 1942b; Metriidae LeConte, 1861; Migadopidae Chaudoir, 1861; Nebridae Laporte, 1834c; Odacanthidae Laporte, 1834c; Omphronidae Latreille, 1810; Orthogoniidae Chaudoir, 1871c; Ozaenidae Hope, 1838; Panagaeidae Bonelli, 1810; Patrobiidae Kirby, 1837; Psalididae Latreille, 1806; Peleciidae Horn, 1881; Pentagonidae Bates, 1873; Pericatidae Hope, 1838; Perigonidae Horn, 1881; Pseudomorphidae Horn, 1881; Psydridae LeConte, 1861; Pierostichidae Ericson, 1837; Scaritidae Bonelli, 1810; Siagonidae Bonelli, 1810; Thyreopteridae Chaudoir, 1869; Trechidae Bonelli, 1810; Zuphiidae Jeannel, 1941.

SUBFAMILY CARABINAE

SUPERTRIBE Carabitae

TRIBE Carabini

Calosoma Weber 01–20

Castrida Motschulsky 65–300
Callistria Motschulsky 65–307
Calamata Motschulsky 65–307
Acampalita Lapouge 29a–9
Catastrica Lapouge 29a–9
Callipara Motschulsky 65–309
Syncalosoma Breuning 27–144
Calodrepa Motschulsky 65–310
Acamygonia Lapouge 24–38
Camedula Motschulsky 65–303
Carabosoma Gehin 85–32
Camemonia Lapouge 24–38
Chrysostigma Kirby 37–19
Tapinosthenes Kolbe 95–56
Lyperostenia Lapouge 29a–3
Callitropa Motschulsky 65–300
Paratropia Lapouge 29a–3
Paralcalosoma Breuning 27–141
Blapatosoma Gehin 85–33
Microcalosoma Breuning 27–146
Neocalosoma Breuning 27–146
Aulacopterus Gehin 85–34
Carabomimus Kolbe 95–57
Calopachys Haury 80–164
Eutelodontum Gehin 81–82
Callisthenes Fischer von Waldheim 21–10
Microcallisthenes Apfelbeck 18–161
Isotenia Lapouge 29a–2
Callistenia Lapouge 29a–2

sayi Dejean 26–198. West Indies, C. Am., No. Am., Puerto Rico
armatus Laporte 35–156
abdominale Gehin 85–58
virginicum Casey 97–344
cuprascens Roeschke 00–71
splendidum Dejean 31–558. (2) GA, FL; Cuba, Dominican Republic

Carabus Linné 58–413
Megodontus Solier 48–58
Diocarabus Reitter 96–185
Hemicarabus Gehin 85–19
Oreocarabus Gehin 85–26
Cryocarabus Lapouge 31–575
Eucarabus Gehin 76–19
Neocarabus Lapouge 31–569
Archicarabus Seidlitz 87–6
Tanaocarabus Reitter 96–135
Homoeocarabus Reitter 96–144
Paracarabus Lapouge 32–630
Neocarabus Hatch 49a–144
Autocarabus Seidlitz 87–7
Lichnocarabus Reitter 96–161
basilicus Chevrolat 36–169. Puerto Rico

SUPERTRIBE Cicindelitae
TRIBE Megacephalini

Megacephala Latreille 02–79
Metriocheila Thomson 57a–50 (Subg)
Phaeoxantha Chaudoir 50a–7 (Subg)
Tetracha Hope 38–6
acutipennis Dejean 25–13. Cuba, Hispaniola, Puerto Rico
adonia Laporte 34a–83
cyanoe-nigra Chaudoir (Leng & Mutchler 16–685)
laportei Chevrolat 34a–83
virginica Olivier 90–30
carolina Linné 66–657. BJ, MX Guatemala, Nicaragua, Cuba,
Grand Cayman, USA
boisduvali Gistl 37–7

Quaest. Ent., 1984, 20 (4)
Erwin and Sims

carolinensis Latreille 06–175
maculicornis Laporte 34b–29
mexicana Gray 32–263
occidentalis Klug 29–11
splendida Dokhtouroff 82–46
virgula Thomson 57a–31
rutilans Thomson 57a–35. Brazil
s. confusa Chaudoir 65–63. Colombia, Venezuela, Curacao, Anegada, St. Martin, Antigua
antigua Leng & Mutchler 16–684
s. infuscata Mannerheim 37–6. Cuba, Hispaniola, Puerto Rico, St. Thomas, St. John, St. Croix, St. Martin, St. Barthélemy, USA
obscurata Chaudoir 44–454

TRIBE Cicindelini

Cicindela Linné 58–407
Pentacomia Bates 72b–265. (Subg)
acuniae Mutchler 24–1. Cuba
argentata Fabricius 01–242. MX, Guatemala, Costa Rica, Panamá, Colombia, Venezuela, Br. Guiana, Fr. Guiana, Brazil, Bolivia, Argentina, Haiti, Guadeloupe, Argentina, Haiti, Guadeloupe
egaensis Thomson 57b–130
guerin Gory 33–178
lucorum Gistl 37–71
misella Chaudoir 54–121
pallipes Fleutiaux & Sallé 89–359
taitenis Boheman 58–1
boops Dejean 31–258. Cuba, Hispaniola, Puerto Roco
cardini Leng & Mutchler 16–689. Cuba
cubana Leng & Mutchler 16–689. Cuba
dorsalis Say 17–20. MX, Cuba
p. castissima Bates 84–260
p. venusta Laferté-Sénèclère 41–37
saulcyi Schaupp 83–99
longilabris Say 24–268. ID, UT, ID, IL, NY, NF, AK, CA, NE, WY, OR; Canada, Bermuda?
marginata Fabricius 75–226. Bahamas Is, Cuba, USA
variegata Dejean 25–84
olivacea Chaudoir 54–118. Cuba, USA
rufiventris Dejean 25–102. Hispaniola, USA
collusor Casey 13–15
schaefleri Horn 03–213. MX, Haiti
suturalis Fabricius 98–62. S. Am., Hispaniola, Puerto Rico, St. Thomas, St. John, St. Martin, St. Barthélemy, Barbuda, Antigua, Guadeloupe, Martinique, Barbados, St. Vincent, Grenada
Carabid Beetles of the West Indies

 chlorocephala Mannerheim 37–17
 hieroglyphica Klug 34–30
 trifasciata Dejean 25–85
 tropicalis Motschulsky (Horn 26–173)
p. nocturna Steinheil 75–96. S. Am., Guadeloupe
 guadeloupensis Fleutiaux & Sallé 89–358
 trifasciata Fabricius 81–286. Bahamas, Cuba, I. de Pinos, Grand Cayman,
 Jamaica, Hispaniola, Puerto Rico, St. Thomas, St. John, St. Martin,
 Barbuda, Antigua, Guadeloupe, St. Barthélemy, Anguilla, St. Croix,
 St. Domingo, Haiti, Virgin Is.
 tortuosa Dejean 25–87
 hebraea Putzeys 74–117
s. ascendens LeConte 51–172. MX, Bahamas Is., USA
 serpens LeConte 51–173
 sigmoidea Chaudoir 54–113
 tortuosa LeConte 51–172
 trifasciata LeConte 48–181
f. sigmoidea LeConte 51–172. MX?, St. John, USA
 viridicollis Dejean 31–265. Cuba
 viridiflavescentis Horn 23–329. Dominican Republic
s. originalis Horn 36–23. Haiti

SUBFAMILY SCARITINAE
SUPERTRIBE Siagonitae
TRIBE Enceladini

Enceladus Bonelli 13–460
 gigas Bonelli 13–460. Brazil, Colombia, Surinam, French Guiana, Montserrat

SUPERTRIBE Pseudomorphitae
TRIBE Pseudomorphini

Pseudomorpha Kirby 25–98
 Heteromorpha Kirby 25–109
 Axinophorus Dejean & Boisduval 29–60
 Drepanus Dejean 31–434
 caribbeana Darlington 35b–214. Haiti

SUPERTRIBE Scarititae
TRIBE Scaritini

Scarites Fabricius 01–123
 Scallophorites Motschulsky 57–95
 Antilliscaris Bänninger 49–136
 Taeniolobus Chaudoir 55–30

Quaest. Ent., 1984, 20 (4)
cubanus Bänninger 37–321. Cuba
danforthi Darlington 39–80. Puerto Rico
darlingtoni Bänninger 35–159. Haiti
mutchleri Bänninger 39–149. Puerto Rico
megacephalus Hlavac 69–4. Puerto Rico
subterraneus Fabricius 75–249. ON, PA, DE; (2) SC, FL; (3) CA, MX; (5) SD;
Cuba
 fusser Degeer 74–350
 spinipes Sulzer 76–62
 interruptus Herbst 84–133
 subterraneus Bonelli 13–466
 beckwithi Stephens 27–37
 denticollis Chaudoir 43–729
s. patruelis LeConte 45–207. (2) GA, FL; Cuba
s. alternans Chaudoir 43–729. (2) FL, Cuba
montana Mutchler 34a–1. Puerto Rico

 Stratotes Putzeys 46–522
 iracunda Putzeys 63–9. Dominica, Martinique

Tribe Clivinini

Dyschirius Bonelli 13–483
 Akephorus LeConte 51–194
 Dyschiridius Jeannel, 41–264
erythrocerus LeConte 57–78. (1) NF, ON, IN, OH, DE, NY; (2) FL; (5) SD,
 (3) MX; Cuba
 coamensis Mutchler 34a–2. Puerto Rico
 sublaevis Putzeys 46–562. (1) NY; (3) TX, MX; (5) MB; Cuba
 rubiventris LeConte 57–79
 dentiger LeConte 57–79

Clivina Latreille 02–96
 Eupalamus Schmidt-Goebel 46–pl. 3
 Isoclivina Kult 59–117
 Paraclivina Kult 47–31
 Semiclivina Kult 47–31
dentipes Dejean 25–415. (1) DE; (2) SC, GA, FL; (3) TX, AZ, CA; Cuba
bipustulata Fabricius 01–125. (1) ON, PA, DE; (2) SC, FL; (3) AZ, MX;
 (5) SD; West Indies, Cuba
 quadrimaculata Palisot de Beauvois 05–107
addita Darlington 34–67. Puerto Rico
biguttata Putzeys 66–155. Cuba
 bisignata Leng & Mutchler 14–395
cubae Darlington 34–68. Cuba
insularis Jacquelin du Val 57–13. Cuba, Puerto Rico
limbipennis Jacquelin du Val 57–16. Cuba, Puerto Rico
 simplex Chevrolat 63–192
marginipennis Putzeys 46–619. (3) MX; “USA”; Guadeloupe

Halocoryza Alluaud 19–100
arenaria Darlington 39–84. (2) FL; (3) MX; Dominican Republic

Schizogenius Putzeys 46–649
Genioschizus Whitehead 72–144
Listropus Putzeys 63–3
arimao Darlington 34–71. Cuba

Oxydrepanus Putzeys 66–103
rufus Putzeys 46–564. (2) FL; Cuba, Guadeloupe
brevicarinatus Putzeys 46–571
reiheoides Darlington 39–83. Dominican Republic

Neoreicheia Kult 50–322
[See Oxydrepanus]

Ardistomis Putzeys 46–636
Semiardistomis Kult 50–301
Ardistomielus Kult 50–303
atripennis Putzeys 66–202. Guadeloupe
cyaneolimbatus Fleutiaux & Sallé 63–194. Cuba
gundlachi Leng & Mutchler 14–395
elongatulus Putzeys 66–208. Cuba
laevistriatus Fleutiaux & Sallé 89–363. Guadeloupe
mannerheimi Putzeys 46–645. Puerto Rico
nigroclarus Darlington 39–83. Dominican Republic
nitidipennis Darlington 34–70. Cuba
ramsdeni Darlington 37a–120. Cuba
rufoclarus Darlington 39–82. Dominican Republic
guadeloupensis Kult 50–307. Guadeloupe
aticola Darlington 35b–173. Haiti

Aspidoglossa Putzeys 46–626
aerata Putzeys 46–635. West Indies
seemicrenata Chaudoir 43–735. Guadeloupe
guadeloupensis Putzeys 46–632
comma Putzeys 46–634

SUBFAMILY PAUSSINAE
SUPERTRIBE Paussitae
TRIBE Ozaenini

Pachytele Perty 30–3
delauneyi Fleutiaux & Sallé. 89–362 Guadeloupe
pallida Chevrolat 63–190

Quaest. Ent., 1984, 20 (4)
SUPERTRIBE Brachinitae
TRIBE Brachinini

Brachinus Weber 01–22

Brachynus auctorum

Neobrachinus Erwin 70–47

gilvipes Mannerheim 37–41

adustipennis Erwin 70–81. (1) MI, NY, MA, IL, IN; (2) TN, GA, FL, AL, AR, MS, LA; (3) OK, TX, NM, MX; (5) KS, MO; Panamá, Cuba

Pheropsophus Solier 33–463

Pheropsophidius Hubenthal 11–547

Protopheropsophus Hubenthal 11–548

aequinoctialis Linné 63–395. (3) MX; Nicaragua, Costa Rica, Panamá, Trinidad, Hispaniola, S. Am.

complanatus Fabricius 75–242

planus Olivier 95–62

obliquus Brullé 34a–251

SUBFAMILY PSYDRINAE

SUPERTRIBE Rhysoditae
TRIBE Rhysodini

Clinidium Kirby 35–6

Mexiclinidium Bell & Bell 78–63

Protainoa Bell & Bell 78–63

Tainoa Bell & Bell 78–64

Arctoclinidium Bell 70–308

xenopodium Bell 70–316. Dominican Republic
darlingtoni Bell 70–317. Jamaica
curvicosta Chevrolat 73–215. Cuba
incis Bell 70–319. Puerto Rico
guildingi Kirby 35–8. St. Vincent, Cuba, Guadeloupe
planum Chevrolat 44–58. Guadeloupe
humeridens Chevrolat 73–215. Cuba
boroquense Bell 70–321. Puerto Rico
haitiensis Bell 70–322. Haiti
jamaicensis Arrow 42–181. Jamaica
chiolinoi Bell 70–323. Jamaica

Plesioglymmius Bell & Bell 78–70

Ameroglymmius Bell and Bell 79–435

compactus Bell & Bell 79–437. Cuba
SUPERTRIBE Trechitae
TRIBE Trechini

Perileptus Schaum 60a–663
columbus Darlington 34–86. Cuba
dentifer Darlington 35b–177. Haiti, Puerto Rico
jeanneli Darlington 34–87. Jamaica
minutus Darlington 35b–178. Jamaica, Haiti

TRIBE Pogonini

Diplochaetus Chaudoir 71b–43
rutilus Chevrolat 63–197. Cuba, S. Am.

TRIBE Bembidiini

Mioptachys Bates 82–144
Tachymenis Motschulsky 62–27 (not Weigmann)
autumnalis Bates 82–137. (3) MX; Guatemala, Nicaragua, Panamá, Cuba,
Montserrat, Guadeloupe
insularis Darlington 39–86. Dominican Republic
noctis Darlington 35b–174. Haiti
Tachyta Kirby 37–56
hispaniolae Darlington 34–77. Haiti
Elaphropus Motschulsky 39–73
Tachylopha Motschulsky 62–27
Tachyura Motschulsky 62–27
Barytachys Chaudoir 68b–213
Sphaerotachys Müller, 26–95
Trepanotachys Alluaud 33–17
Tachyphanes Jeannel 46–362
tritax Darlington 35b–175. Haiti

Pericompsus LeConte 51–191
Tachysops Casey 18a–171
Tachysalia Casey 18a–173
Leiotachys Jeannel 62–616
Eidocompsus Erwin 74b–21
Leptotachys Jeannel 62–615
immaculatus Bates 71b–246. (3) MX; Honduras, Costa Rica, Panamá, Cuba,
S. Am.
reichei Putzeys 45–415. (3) MX; Guatemala, Honduras, Costa Rica, Panamá,
Jamaica, S. Am.
jamcubanus Erwin 74b–57. Jamaica, Cuba
elegantulus Laferte-Senectère 41–46. Puerto Rico
blandulus Schaum 60b–202

Quaest. Ent., 1984, 20 (4)
macrodentra Chevrolat? (Wolcott 36–187) Puerto Rico
morantensis Erwin 74b–61. Jamaica, Haiti, Dominican Republic
philipi Erwin 74b–62. Haiti

Tachys Stephens 28b–4

- *Isotachys* Casey 18a–204
 - bradycellinus Hayward 00–224 (2) LA; Cuba, Haiti, Jamaica
 - translucens Darlington 34–123. Cuba
 - vittiger LeConte 51–193. (3) CA; Puerto Rico, Antigua, Galapagos
 - *ensenadae* Mutchler 34a–3

Paratachys Casey 18a–174

- *Eotachys* Jeannel 41–426
 - abruptas Darlington 34–80. Guadeloupe
 - alibipes LeConte 63–20. (2) LA: Guadeloupe
 - putzeysi Fleutiaux & Sallé 89–363
 - carib Darlington 35b–176. Haiti, Puerto Rico
 - cubax Darlington 34–78. Cuba
 - dominicanus Darlington 34–81. Dominica
 - filax Darlington 34–83. Cuba
 - paulax Darlington 34–80. Cuba
 - piceolus Laferté-Sénéctère 41–48. Puerto Rico
 - striax Darlington 34–82. Cuba

Polyderis Motschulsky 62–27

- *Microtachys* Casey 18a–210
- *Neotachys* Kult 61–2
- *Polyderidius* Jeannel 62–611
 - ridiculus Schaufuss 79–552. St. Thomas, Virgin Islands, Guatemala, Cuba
 - *capito* Bates 84–287

Lymnastis Motschulsky 62–27

- *Paralimnastis* Jeannel 32–176
- *Limnastis auctorum*

- americana Darlington 34–83. Cuba

Micratopus Casey 14a–42

- *Blemus* LeConte 48–473
 - insularis Darlington 34–86. Puerto Rico
 - parviceps Darlington 34–85. Cuba

Stylulus Schaufuss 82–46

- *Petrocharis* Ehlers 84–36
 - nasutus Schaufuss 82–46. St. Thomas
 - *eggersi* Ehlers 84–36

Bembidion Latreille 02–82

- *Chrysobracteon* Netolitzky 14a–166
- *Parabracteon* Notman 29–157
- *Bracteon* Bedel 79–27
- *Odontium* LeConte 48–452
- *Ochthedromus* LeConte 48–453
- *Hydrium* LeConte 48–453
Carabid Beetles of the West Indies

Eudromus Kirby 37–55
Eurytrachelus Motschulsky 46–tab. 5
Pogonidium Ganglbauer 92–149
Bracteonimus Lindroth 54–144
Metallina Motschulsky 46–tab. 5
Actedium Motschulsky 64–182
Lionepha Casey 18a–18
Trechonepha Casey 18a–19
Plataphodes Ganglbauer 92–152
Plataphus Motschulsky 64–184
Micromelomalus Casey 18a–37
Melomalus Casey 18a–37
Blepharoplataphus Netolitzky 20–96
Trichoplataphus Netolitzky 14b–51
Trachelonepha Casey 18a–37
Liocosmius Casey 18a–43
Leuchydrium Casey 18a–46
Pseudoperyphus Hatch 50–100
Bembidionetolitzkya Strand 29–25
Daniela Netolitzky 10–210
Peryphus Stephens 28b–2
Hydriomicrus Casey 18a–87
Eupetedromus Netolitzky 11–190
Notaphus Stephens 28b–51
Peryphodes Casey 18a–85
Furcacampa Netolitzky 31–158
Lopha Stephens 28b–2
Cyclolopha Casey 18a–144
Semicampa Netolitzky 10–217
Diplocampa Bedel 96–70
Parabopa Casey 18a–153
Trepanedoris Netolitzky 18–24
Amerizus Chaudoir 68b–216
Philochthus Stephens 28b–7
Cylindrobracteon Netolitzky 42–50
Litoreobracteon Netolitzky 42–51
Argyrobracteon Netolitzky 42–53
Conicibracteon Netolitzky 42–53
Stylobracteon Netolitzky 42–53
Foveobracteon Netolitzky 42–54
Desarmatocillenus Netolitzky 42–39
Peryphophila Netolitzky 42–64
Chinocillenus Netolitzky 42–41
Philochthemphanes Netolitzky 42–82
Hirmoplataphus Netolitzky 42–107
Aureoplataphus Netolitzky 42–108

Quaest. Ent., 1984, 20 (4)
Synchoperyphus Netolitzky 42–122
Lymneops Casey 18a–168
cubanum Darlington 37a–121. Cuba
jamaicense Darlington 34–76. Jamaica
portoricense Darlington 39–86. Puerto Rico
rucillum Darlington 39–86. Puerto Rico
turquinum Darlington 37a–122. Cuba
sparsum Bates 82–151. (3) MX; Nicaragua, Guatemala, Cuba, Puerto Rico, S. Am.
spretum Dejean 31–70. (3) MX; Haiti, Puerto Rico, Antigua
fastidiosus Laferté-Sénectère 41–49
apicale Jacquelin du Val 56–23
chevrolati Gemminger & Harold 68–409
viridicolle Laferté-Sénectère 41–48. (2) FL; (3) TX, MX; (4) AZ; (5) NW, AB, SA, MB, SD; Cuba, Puerto Rico
hamiferum Chaudoir 68b–244
apicale Jacquelin du Val 56–23
chevrolati Gemminger & Harold 68–409
particeps Casey 18a–124
affine Say 25–86. (1) ON, MI, DE; (2) SC, AL, Cuba; (3) TX; (5) SD
decipiens Dejean 31–159
fallax Dejean 31–189
thespis Casey 18a–128
darlingtoni Mutchler 34a–3. Puerto Rico, Cuba

SUBFAMILY HARPALINAE
SUPERTRIBE Pterostichitae
TRIBE Morionini

Morion Latreille 10–159
Morio auctorum
costigerus Darlington 34–90. Jamaica

TRIBE Pterostichini

Agonum Bonelli 10–syn. tab.
Anchomenus auctorum
Paranchomenus Casey 20a–30
Anchomenus Samouelle 19–106
Pseudanchus Casey 20a–45
Taphranchus Casey 20a–52
Stictanchus Casey 20a–54
Idiochroma Bedel 02–216
Deratanchus Casey 20a–70
Circinalia Casey 20a–72
Circinalidia Casey 20a–78
Carabid Beetles of the West Indies

Micragonum Casey 20a–80
Stereagonum Casey 20a–80
Tetraleucus Casey 20a–88
Platynomicrus Casey 20a–90
Leucagonum Casey 20a–99
Melanagonum Casey 20a–111
Paragonum Casey 20a–123
Punctagonum Grey 37–311
Europhilus Chaudoir 59a–124
Tanystola Motschulsky 50–69
Anchus LeConte 54–38
Oxyscelaphus auctorum
coptoderoides Darlington 37a–134. Cuba
extensicole Say 25–54. (1) NS, PA, DE; (3) MX; (5) MB, SD
proximum Harris 28–132
obscuratum Chaudoir 43–763
viride LeConte 48–222
gaudens Casey 20a–55
clientulum Casey 20a–55
vigilans Casey 20a–56
elongatulum auctorum
simplex LeConte 54–46
cyaneascens Motschulsky 59–159
s. cubanum Darlington 34–97. Cuba
laetificum Darlington 35b–200. Haiti

Platynus Bonelli 10–syn. tab.
Anchomenus auctorum
Colpodes auctorum
Dyscolus Dejean 37–347
Metallosomus auctorum
Stenocnemus Mannerheim 37–29
Rhadine LeConte 48–218
Ophryodactylus Chaudoir 50b–382
Limodromus Motschulsky 64–316
Comstockia Van Dyke 18–179
Platynidius Casey 20a–4
Macragonum Casey 20a–4
Hemiplatynus Casey 20a–15
Stenoplatynus Casey 20a–15
Anacolpodes Casey 20a–17
acuniai Darlington 37a–133. Cuba
agonella Darlington 35b–187. Haiti
alternans Chaudoir 78b–348. Guadeloupe
altifluminis Darlington 35b–198. Haiti
amone Darlington 35b–190. Haiti
aequinoctialis Chaudoir 50b–383. (3) MX, West Indies, S. Am.

Quaest. Ent., 1984, 20 (4)
baragua Darlington 35b–197. Cuba
biramosa Darlington 39–89. Dominican Republic
s. transcribato Darlington 39–91. Dominican Republic
s. uniramosa Darlington 39–90. Dominican Republic
bromeliarum Darlington 37b–122. Jamaica
bruesi Darlington 35b–196. Jamaica
bruneri Darlington 37a–132. Cuba
buccheri Darlington 37a–130. Cuba
calathina Darlington 39–92. Dominican Republic
carabiai Darlington 37a–129. Cuba
christophe Darlington 35b–191. Haiti
cinchonae Darlington 34–93. Jamaica
constricticeps Darlington 35b–194. Haiti
cubensis Darlington 37a–132. Cuba
cuprascens Motschulsky 64–305. Hispaniola
cyhrina Darlington 35b–192. Haiti
dejeani Chaudoir 59b–359. Guadeloupe

brunnea Dejean 31–440
elliptica Chaudoir 78b–312. Guadeloupe, Martinique, S. Am.
elongata Chaudoir 78b–344. Guadeloupe
estriata Darlington 39–96. Puerto Rico
faber Darlington 35b–185. Jamaica
fracelinea Darlington 34–96. Haiti
fratrorum Darlington 37a–129. Cuba
jaegeri Dejean 31–728. Hispaniola
laeviceps Darlington 39–91. Dominican Republic
latelytra Darlington 35b–199. Jamaica
l'herminieri Chaudoir 42–838. Guadeloupe
macer Darlington 34–94. Jamaica

mannerheimi Chaudoir 59b–360. Hispaniola

jaegeri Mannerheim 37–30
marca Darlington 35b–180. Haiti
media Darlington 37a–130. Cuba
mediopera Darlington 37a–130. Cuba
memnonia Dejean 31–439. Guadeloupe
pavens Darlington 35b–188. Haiti
pynarensis Darlington 37a–128. Cuba
puncticeps Darlington 39–94. Dominican Republic
s. compacta Darlington 39–95. Dominican Republic
punctus Darlington 35b–195. Jamaica
ramoni Darlington 39–92. Dominican Republic
roydi Darlington 37b–124. Jamaica
scripta Darlington 39–93. Dominican Republic
scriptella Darlington 39–94. Dominican Republic
sellensis Darlington 37b–122. Haiti
subangusta Darlington 37a–131. Cuba
subcordens Darlington 35b–192. Haiti
subovalis Darlington 35b–186. Jamaica
tipoto Darlington 35b–193. Haiti
turquinensis Darlington 37a–131. Cuba
vagepunctata Darlington 34–95. Jamaica
visitor Darlington 35b–195. Haiti
wolla Darlington 35b–189. Haiti

Glyptolenus Bates 78–595
 Glyptolenus Bertkau 78–428
 simplicollis Darlington 34–97. Dominica
 chalybaeus Dejean 31–720. Nicaragua, Costa Rica, Panamá, Guadeloupe,
 Dominica, S. Am.
 lebioides Bates 78–599

Dyschromus Chaudoir 35–429
 centralis Darlington 39–88. Dominican Republic
eupipennis Chaudoir 74–18. Hispaniola
 opacus Chaudoir 35–430. Hispaniola
 perezi Darlington 39–88. Dominican Republic
tiburonicus Darlington 35b–179. Haiti

Pterostichus Bonelli 10–syn. tab.
 Platysma Bonelli 10–syn. tab.
 Feronia Latreille 17–101
 Cylindrocharis Casey 18b–326
 Holciophorus LeConte 52–249
 Hypherpes Chaudoir 38–8
 Brachystilus Chaudoir 38–10
 Haplocoelus Chaudoir 38–8
 Gonoderus Motschulsky 59–149
 Monoferonia Casey 18b–322
 Leptoferonia Casey 18b–321
 Gastrellarius Casey 18b–321
 Orsonjohnsonus Hatch 33–119
 Steropus Stephens 28a–116
 Steroderus Motschulsky 50–tab. 9
 Derus Motschulsky 50–50
 Derulus Tschitschérine 96a–112
 Poecilus Bonelli 10–syn. tab.
 Leconteus Lutschek 15–414
 Parapoecilus Jeannel 42a–751
 Bothriopterus Chaudoir 38–9
 Dysidius Chaudoir 38–8
 Parargutor Casey 18b–324
 Euferonia Casey 18b–322
 Omaseidius Jeannel 42a–784
 Refonia Casey 18b–323

Quaest. Ent., 1984, 20 (4)
Piesmus LeConte 48–340
Ophryogaster Chaudoir 78a–59
Pristoscelis Chaudoir 78a–71
Lophoglossus LeConte 52–248
Melanius Bonelli 10–syn. tab.
Pseudomaseus Chaudoir 38–10
Metamelanius Tschitschérine 00–395
Lagarus Chaudoir 38–10
Platyderus Kirby 37–29
Pseudargutor Casey 18b–324
Pseudolagarus Lutschnik 22–70
Argutor Stephens 28a–102
Micromaseus Casey 18b–324
Omaeseulus Lutschnik 29–5
Americomaseus Csiki 30–644
Cryobius Chaudoir 38–11
Pseudocryobius Motschulsky 50–9
Lyperopherus Moschulsky 45–156
Euryperis Motschulsky 50–9
Stereocerus Kirby 37–34
Boreobia Tschitschérine 96b–373
Hammatomerus Chaudoir 68b–337
Pheryphes Casey 20b–186
Feronia Casey 18b–222
Anilloferonia Van Dyke 26–115
Peristhethus LeConte 73–305
Gastrosticta Casey 18b–323
Paraferonia Casey 18b–323
Allotriopus Bates 82–81
Pseudoferonia Ball 65–107
Melvilleus Ball 65–110
Mayaferonia Ball & Roughley 82–335
cubensis Darlington 37a–123. Cuba
chalcites Say 25–56. Cuba, USA
cupreomicans Sturm 43–23
micans Chaudoir 43–767
sayi Brullé 35a–277
Caelostomus MacLeay 25–23
punctifrons Chaudoir 50b–430. Jamaica, (W. Africa)
Loxandrus LeConte 52–250
Megalostylus Chaudoir 43–765
infimus Bates 82–87. (3) TX, MX; Haiti
mutans Darlington 35b–180
rectangulus LeConte 78–377. (2) FL; (3) TX, MX; Grand Cayman Island
celeris Dejean 28–246. (2) SC, GA, FL, AL, LA, MS; (3) TX, MS; Bahamas,
Cuba, Puerto Rico
Carabid Beetles of the West Indies

cruentatus Chevrolat 58–209
cubanus Tschitschérine 03–60. (3) MX; Costa Rica, Bahamas, Cuba,
Dominican Republic, Haiti, Puerto Rico
floridanus LeConte 78–376. (2) FL, AL, MS, LA; (3) TX; Bimini
nocticolor Darlington 34–91. Cuba
crenatus LeConte 52–252. (2) GA, FL, AL, MS, LA; Cuba

SUPERTRIBE Panagaeitae
TRIBE Panagaecini

Coptia Brullé 35b–433
effeminata Darlington 34–89. Cuba
sauricollis Darlington 34–88. Cuba

Panagaeus Latreille 04–291

Hologaeus Ogueta 66–5
fasciatus Say 25–70. (1) ON, NY, IN, PA, DE; (2) VA, SC, GA, FL; (5) KS;
P Puerto Rico
asuai Ogueta 66–8. Dominican Republic
quadrisignatus Chevrolat 35–187. (3) MX; Cuba, Puerto Rico, St. Thomas

SUPERTRIBE Callistitae
TRIBE Callistini

Chlaenius Bonelli 10–syn. tab.

Pseudanomoglossus Bell 60–101
Eurydactylus Laferté-Sénéctère 51–255
Glyptoderus Laferté-Sénéctère 51–260
Anomoglossus Chaudoir 56–192
Agostenus Motschulsky 50–tab. 9
Pelasmus Motschulsky 50–tab. 9
Brachylobus Chaudoir 76a–287
Chlaeniellus Reitter 08–185
Merochlaenius Grundmann 55–280
Pachychlaenius Grundmann 55–282
Chlaeniopus Grundmann 55–284
Sericochlaenius Grundmann 55–286
Aulacosomus Grundmann 55–276

maxillosus Horn 76–260. (2) GA, FL, AL; Bahamas
niger Randall 38–34. (1) NF, NS, QU, ON, WI, MI, NY, NH, MA, IL, IN,
PA, NJ; (2) TN, SC, FL, AR, AL, LA; (3) TX; (4) WA, BC; (5) NW,
AB, MB, MN, IA, KS; Cuba
exaratus Laferté-Sénéctère 51–249
ludovicianus Leng 15–592
perplexus Dejean 31–655. (2) GA, FL, AL, LA; (3) TX, MX; Cuba,
Puerto Rico, Haiti, Dominican Republic

Quaest. Ent., 1984, 20 (4)
circumcinctus Say 34–418
virens Chaudoir 43–753
poeyi Chevrolat 63–194
cubanus Chaudoir 76a–238. Cuba
gundlachi Chaudoir 76a–148. Cuba
jamaicae Darlington 35b–201. Jamaica
floridanus Horn 76–263. (2) GA, FL; Bahamas

TRIBE Oodini

Oodes Bonelli 10–syn. tab.
 Lachnocrepis LeConte 53–391
 amaroides Dejean 31–674. Cuba, USA
Stenocrepis Chaudoir 57–39
 Stenous Chaudoir 57–39
 Crossocrepis Chaudoir 57–48
duodecimstriata Chevrolat 35–173. (2) SC; (3) MX; Guatemala,
 Nicaragua, Cuba
gilvipes Chaudoir 82b–504. Cuba, S. Am.
pallipes Reiche 43–38
metallica Dejean 26–379. Cuba, Puerto Rico, S. Am.
 agilis Laferté-Sénéctère 51–273
palustris Darlington 35b–202. Jamaica
subdepressa Darlington 34–101. Haiti
tibialis Chevrolat 34b–46. (3) MX; Guatemala, Cuba, Puerto Rico, S. Am.
 femoralis Chaudoir 35–444
 pallipes Brulé 38–32
sulcata Chevrolat (Leng & Mutchler, 14–395). Cuba

Anatrichis LeConte 53–391
 Oodinus Motschulsky 64–352
 Oodiellus Chaudoir 82a–322
piceus Motschulsky 64–353. (2) FL; (3) TX, MX; Guatemala, Panamá,
 Cuba S. Am.
 mexicanus Chaudoir 82a–323

TRIBE Licinini

Diplocheila Brulé 34a–407
 Rembus Dejean 26–380
 Isorembus Jeannel 49–771
major LeConte 48–418. (1) ON, WI, MI NY, CT, RI, IN, OH, PA; (2) FL, AL,
 LA; (3) TX; (5) SD, MN, NK, IA, KS, MO; Cuba
 expansa Casey 13–148
 oblonga Casey 13–148
 procura Casey 20b–200
s. melissisa Ball 59–78. (2) FL, AL, LA; (3) TX; Cuba

SUPERTRIBE Harpalitae
TRIBE Harpalini

Bradycellus Erichson 37–64
- *Liocellus* Motschulsky 64–207
- *Glycerius* Casey 84b–79
- *Tetraplatypus* Tschitscherine 97–62
- *Catharellus* Casey 14b–242
- *Stenocellus* Casey 14b–243
- *Liocellus* Tschitscherine 01–247
- *Triliarthrus* Casey 14b–220
- festinans Casey 14b–257. (3) TX; (5) KS, Cuba
cubanus Darlington 34–110. Cuba
selleanus Darlington 35b–204. Haiti
velatus Darlington 34–111. Cuba, Puerto Rico

Acupalpus Latreille 29–291
- *Philodes* LeConte 61–33
- *Goniolophus* Casey 14b–262
- *Tachistodes* Casey 14b–286
- *Anthracus* Motschulsky 64–207
- *Aepus* LeConte 48–413
convexulus Darlington 34–112. Cuba
iridens Motschulsky 64–201. Cuba

Stenolophus Stephens 27–67
- *Agonoderus* Dejean 29–49
- *Agonoleptus* Casey 14b–284
infuscatus Dejean 29–54. (1) NY, DE; (2) NC, SC, FL; (3) TX; Cuba
ochropezus Say 25–54. BJ, CA, Cuba, Puerto Rico
convexicollis LeConte 48–309
gracilis Casey 84a–14

Pogonodaptus Horn 81–178
rostratus Darlington 35b–204. Haiti

Harpalus Latreille 02–325
- *Ophonus* Stephens 27–67
- *Pheuginus* Motschulsky 45–197
- *Pseudophonus* Motschulsky 45–196
- *Amblystus* Motschulsky 64–209
- *Pardileus* Gozis 82–289
- *Ephiharpalus* Reitter 00–75
- *Lasioharpalus* Reitter 00–75
- *Megapangus* Casey 14b–71
- *Plectralidus* Casey 14b–72
- *Pharalus* Casey 14b–63
- *Harpalomerus* Casey 14b–76

Quaest. Ent., 1984, 20 (4)
Glanodes Casey 14b–50
Opadius Casey 14b–63
Eupharpalops Casey 24–116
Cordoharpalus Hatch 49b–87
Euharpalus Hatch 53–170
integer Fabricius 01–196. Guadeloupe, Hispaniola
grimni Sturm 26–148

Selenophorus Dejean 29–80
Selenalius Casey 14b–253
Hemisopalus Casey 14b–135
Celiamorphus Casey 14b–141
Gynandropus Dejean 31–817
alternans Dejean 29–86. (3) MX; Cuba Hispaniola, Puerto Rico, Guadeloupe, S. Am.
lineatopunctatus Dejean 29–86
beauvoisi Dejean 29–98. Jamaica, Puerto Rico
aneocupreus Dejean 29–99
cariniger Putzeys 78a–44. Hispaniola
chalybaeus Dejean 29–110. Bahamas, Cuba, Is. Pinos, Jamaica, Hispaniola, Puerto Rico, Antigua, Guadeloupe
cinctus Putzeys 78a–45. Cuba
cyaneopacus Darlington 34–107. Haiti
discopunctatus Dejean 29–92. (2) FL; Cuba, Is Pinos, Hispaniola, Puerto Rico, Antigua, S. Am.
chokoloskei Leng 15–596
aeratus Reiche 43–142
cuprinus Dejean 29–96
harpaloides Reiche 43–142
dubius Putzeys 78a–54. West Indies
flavilabris Dejean 29–97. Cuba, Puerto Rico
s. cubanus Darlington 35b–203. Cuba
guadeloupensis Fleutiaux & Sallé 89–365. Puerto Rico, Guadeloupe
haitianus Darlington 34–107. Haiti
latior Darlington 34–109. Dominican Republic, Puerto Rico
lucidulus Dejean 29–85. West Indies
macleayi Kirby 37–50. West Indies
mundus Putzeys 78a–29. (3) MX; West Indies
nonseriatus Darlington 34–109. Jamaica, Dominican Republic
parumpunctatus Dejean 29–104. West Indies
parvus Darlington 34–105. Puerto Rico
propinquis Putzeys 74–118. Antigua, Guadeloupe
pubifer Putzeys 78a–69. West Indies, S. Am.
puberulus Putzeys 74–119
puertoricensis Mutchler 34a–5. Puerto Rico
puncticollis Putzeys 78a–34. Dominican Republic
pyritosus Dejean 29–84. (3) MX; Guatemala, Honduras, Nicaragua, Panamá,
Carabid Beetles of the West Indies

Cuba, Is. Pinos, Puerto Rico
ramosi Darlington 29–97. Puerto Rico
sinuatus Gyllenhal 06–203. Cuba, Puerto Rico, Antigua, Guadeloupe
solitarius Darlington 34–106. Cuba
striatopunctatus Putzeys 78a–33. (3) MX; Cuba, Puerto Rico
subaeneus Reiche 43–141. Panamá, Guadeloupe, S. Am.
subquadratus Putzeys 78b–293. Cuba, Hispaniola
thoracicus Putzeys 78a–59. Haiti
excisus Putzeys 78a–59

Amblygnathus Dejean 29–62
vitraci Fleutiaux & Sallé 89–364. Guadeloupe, Dominica
puncticollis Putzeys 78a–34. Dominican Republic
guadeloupensis Fleutiaux & Sallé 89–365. Puerto Rico, Guadeloupe

Athrostictus Bates 78–592
iridescens Chaudoir 43–783. Guadeloupe

Stenomorphus Dejean 31–696
Agaosoma Ménétriers 44–63
manni Darlington 34–102. Haiti
cubanus Darlington 37a–135. Cuba

SUPERTRIBE Dryptitae
TRIBE Zuphiini

Pseudaptinus Laporte 35–56
Diaphorus Dejean 31–300
cubanus Chaudoir 77–252. (2) FL; Cuba
deceptor Darlington 34–128. Cuba
insularis Mutchler 34a–4. Cuba, Puerto Rico
salebrosus Liebke 34–375. Cuba
thaxteri Darlington 34–127. Grenada

Thalpius LeConte 51–174
Enaphorus LeConte 51–174
Zuphisoma Laporte 67–103
apicalis Darlington 34–125. Cuba
arrogans Liebke 34–385. Cuba
bierigi Liebke 34–387. Cuba
dorsalis Brulle 34a–181. Cuba
marginicollis Darlington 34–126. Cuba
s. fumipes Darlington 35b–212. Haiti
pygmaeus Dejean 26–460. (2) FL, LA; Cuba

Zuphium Latreille 06–198
Zophium Gistl 38–112
Zoophium Motschulsky 50–t. 8
americanum Dejean 31–298. (1) ON, MI; (2) LA, SC; (3) TX; (4) OR;
(5) SD, KS; Puerto Rico
bierigi Liebke 33–467. Cuba

Quaest. Ent., 1984, 20 (4)
TRIBE Galeritini

Galerita Fabricius 01–214

- *Galeritula* Strand 36–168
- *Progaleritina* Jeannel 49–1058
- *Diabena* Fairmaire 01–94
- *Galeritiola* Jeannel 49–1059
- *Galericeps* Jeannel 49–1058
- *Galeritella* Jeannel 49–1058

lecontei Dejean 31–294. USA; (3) MX.
s. tenebricosa Klug 34–65. Dominican Republic, Haiti, Cuba, Cayman Is.

vetula Chevrolat 63–186.
ruficollis Dejean 25–191. (3) MX, Panamá, Cuba, Jamaica

- erthrodera Brullé 34b–103
- thoracica Chevrolat 34b–34
- humboldti Gistl 37–11
- insularis Laporte 40–36

americana Linné 58–415. Guatemala, Costa Rica, Panamá, S. Am., Trinidad, Guadeloupe, St. Martin

microcostata Darlington 34–124. Puerto Rico

beauvoisi Chaudoir 61–553. Costa Rica, Haiti

- lugens Chaudoir 48–65
- melanaria Erichson 48–555

unicolor Latreille & Dejean 23–117 Cuba, S. Am.

- porcata Klug 34–66
- bahiana Liebke 39b–477

striata Klug 34–66. Haiti

- montana Darlington 35b–211

SUPERTRIBE Ctenodactylitae

TRIBE Ctenodactylini

Leptotrachelus Latreille 29–371

- *Odacantha* Perty 30–2
- *Rhagocrepis* Eschscholtz 29–5
- *Sphaeracra* Say 34–412

dorsalis Fabricius 01–220. (1) ON, NY, DE, DC; (2) SC, FL; (3) SC, KS; Cuba
SUPERTRIBE Lebiitae
TRIBE Perigonini

Perigona Laporte 35–151
- *Nestra* Motschulsky 51–506
- *Spathicus* Nieter 58–428
- *Trechicus* LeConte 53–386

nigriceps Dejean 31–44. (1) QU, IN, NJ, NH, DC; (2) NC, SC, FL, AL;
(3) CA; Cuba, Puerto Rico, Guadeloupe, Martinique, (Old World)
pallipennis LeConte 53–386
umbripennis LeConte 53–386
testaceolimbata Motschulsky 62–33
glabrella Motschulsky 62–34
guadeloupsi Fleutia & Salle 89–367. Guadeloupe
laevigata Bates 72a–200. MX, C. Am., Cuba
 microps Darlington 34–99. Puerto Rico
picea Darlington 34–98. Cuba, Haiti, Dominican Republic, Guadeloupe

TRIBE Lachnophorini

Anchonoderus Reiche 43–38
- *subtilis* Bates 71a–33. (3) MX; Guatemala, Cuba
-leucopterus* Chevrolat 63–198. Cuba, Puerto Rico

Lachnophorus Dejean 31–28
- *Aretaonus* Liebke 36–461
- *Stigmaphorus* Motschulsky 62–48
-leucopterus* Chevrolat 63–198. Cuba, Puerto Rico

Euphoticus Horn 81–144
-pubescens* Dejean 31–30. (2) NC, GA, FL, AL; (3) BJ, MX; Guatemala, S. Am.
-laevicollis* Reiche 43–180
-niger* Gory 33–245
-s. aeneolus* Bates 83–156. (3) MX; Guatemala, Cuba, S. Am.

Eucaerus LeConte 53–386
-haitianus* Darlington 35b–210. Haiti
-insularis* Darlington 34–120. Cuba

TRIBE Cyclosomini

Tetragonoderus Dejean 29–485
- *Peronoscelis* Chaudoir 76b–29
-intersectus* (Germar) 24–28 (2) KY, TN, SC, GA, FL, AL; (3) TX, MX;
-Bahamas

Quaest. Ent., 1984, 20 (4)
TRIBE Masoreini

Macracanthus Chaudoir 46a–539

Masoreus auctorum
brevicillus (Chevrolat) 63–189. Cuba, Puerto Rico

Aephnidius MacLeay 25–23

Masoreus auctorum
ciliatus Mutchler 34b–130. Cuba, Puerto Rico

TRIBE Pentagonicini

Pentagonica Schmidt-Goebel 46–47

Rhombodera Reiche 42–313

Didatus LeConte 53–377

nigricornis Darlington 34–121. (2) FL; Cuba

flavipes LeConte 53–377. (2) SC, FL, AR, LA, Belize, Costa Rica, Panamá,
Jamaica, Guadeloupe, Cuba, Puerto Rico, S. Am.

s. picipes Darlington 35b–211. Jamaica, Hispaniola, Puerto Rico

pallipes LeConte 63–6

americana Motschulsky 64–224

albipes Bates 83–218

picea Fleutiaux & Sallé 89–362

divisa Darlington 34–121. Puerto Rico

atrorufa Gundlach 93–292

bicolor Leng & Mutchler 17–195

nigricornis Darlington 34–121. Cuba

vittula Darlington 39–100. Dominican Republic

TRIBE Odacanthini

Colliuris Degeer 74–79

Anaplagiorrhysis Liebke 30–658

Apiodera Chaudoir 48–35

Apioderella Csiki 32b–1532

Apioderma Csiki 32b–1523

Calocolliuris Csiki 32b–1522

Casnoniella Csiki 32b–1522

Colliurina Liebke 30–658

Colliurita Csiki 32b–1531

Casnonia Latreille & Dejean 22–77

Isocasnonia Csiki 32b–1532

Mimocasnonia Csiki 32b–1532

Odacantha Paykull 98–169

Odacanthella Liebke 30–658

Odacanthina Csiki 32b–1522
Carabid Beetles of the West Indies

Ophionea Klug 21–298
Paracollinus Liebke 30–653
Paracolliuris Liebke 30–658
Plagiorrhysis Chaudoir 48–31
Procolliuris Liebke 30–669
Pseudocasnonia Liebke 30–658
Pseudoplagiorrhysis Liebke 30–657
gundlachi Darlington 34–122. Cuba
limbata Waterhouse 78–304. Jamaica
noah Darlington 34–123. Cuba
picta Chaudoir 43–697. (3) AZ, TX, MX
suturalis Chaudoir 72–405
s. conclusa Liebke 30–689. (3) MX; Cuba
s. extrema Liebke 30–689. (3) MX; Cuba
portoricensis Liebke 30–688. Haiti, Puerto Rico
s. insignis Chaudoir 48–41. Puerto Rico, S. Am.
tetrastigma Chaudoir 62–278. (3) MX
s. caymanensis Darlington 47–211. Cayman Is.

TRIBE Lebiini

Apenes LeConte 51–174
aperta Darlington 35b–209. Jamaica
coriae Chevrolat 63–188. Cuba
laevicincta Darlington 34–119. Haiti
lata Darlington 34–119. Bahamas, Cuba
ovalis Darlington 35b–210. Haiti
pallipes Fabricius 92–159. Puerto Rico, Antigua, Guadeloupe
guadeloupensis Gory 33–186
variegata Dejean 25–217
parallel Dejean 25–218. (3) MX; Bahamas, Cuba, Puerto Rico
s. inaguensis Darlington 53–14. Bahamas
delicata Darlington 34–118. Cuba
portoricensis Darlington 39–100. Puerto Rico
purpurata Fleutiaux & Sallé 89–360. Guadeloupe
strandi Liebke 39a–119. Cuba
suicollis Jacquelin du Val 57–8. Cuba
opaca LeConte 51–175. Bahamas, USA

Apristus Chaudoir 46b–12
sericeus Darlington 34–116. Cuba

Microlestes Schmidt-Goebel 46–41
Blechrus Motschulsky 47–219
Bomiüs LeConte 51–177
Dromius Sloane 98–494

Quaest. Ent., 1984, 20 (4)
poeyi Jacquelin du Val 57–10. Cuba

Somotrichus Seidlitz 87–7
 unifasciatus Dejean 31–389. (4) WA; Cosmop., Guadeloupe
 elevatus Fabricius 87–198
 bicinctus Hope 45–15
 massiliensis Fairmaire 49–419

Phloeoxena Chaudoir 69–145
 Tacana Ball 75–182
 Oenaphelox Ball 75–205
 costata Darlington 37a–135. Cuba
dealeta Darlington 37a–136. Cuba
 montana Darlington 35b–208. Hispaniola
 plagiata Darlington 34–114. Cuba
 imitatrix Darlington 34–114. Cuba
 schwarzi Darlington 34–115. Cuba
 portoricensis Darlington 39–99. Puerto Rico

Coptodera Dejean 25–173
 festiva Dejean 25–174. Cuba, Jamaica
 unicolor Chevrolat 34b–40. (3) MX; Guatemala, Nicaragua, Panamá, Cuba
 obscura Laporte 35–51

Galerucidia Chaudoir 72a–416
dimidiata Chaudoir 72a–420. Cuba

Calleida Dejean 25–220
 Callida auctorum
 Philophuga Motschulsky 59–140
 rubricollis Dejean 25–225. Cuba; “? USA”
 elegans Chaudoir 44–469
bahamensis Darlington 53–11. Bimini
decolor Chaudoir 72b–131. Martinique
pretiosa Chaudoir 72b–124. Hispaniola
tinctula Darlington 34–117. Cuba

Euproctinus Leng & Mutchler 27–14
 Euproctus Solier 49–131
 Andrewesella Csiki 32b–1456
 trivittatus LeConte 78–373. (2) FL; Cuba

Plochionus Latreille & Dejean 24–150
 Menidius Chaudoir 72b–170
 pallens Fabricius 75–244. (1) MA, PA; (2) FL; MX, C. Am., S. Am., Cuba,
 Bahamas Is., Old World
 bicolor Notman 19–234. (2) FL; Cuba

Lebia Latreille 02–85
 Chelonodema Laporte 35–49
 Lia Eschscholtz 29–7
 Loxopeza Chaudoir 70–138
 Polycheloma Madge 67–163
Lamprias Bonelli 10–syn. tab.
Echimuthus Leach 15–81
Omalomorpha Motschulsky 45–42
Homalops Motschulsky 50–42
Lebida Motschulsky 62–51
Metabola Chaudoir 70–160
Aphelogenia Chaudoir 71a–25
Dianchomena Chaudoir 71a–45
frenata Chaudoir 71a–27. S. Am.
s. chevrolati Blackwelder 44–54. Guadeloupe
apicalis Fleutiaux & Sallé 89–361
gibba Darlington 35b–207. Haiti
nigrita Darlington 35b–206. Haiti
nubicola Darlington 39–98. Dominican Republic
tericola Darlington 39–98. Dominican Republic

Quaest. Ent., 1984, 20 (4)
APPENDIX B: CURRENT REVISORS OF WEST INDIAN GENERA

G. E. Ball
Department of Entomology
University of Alberta
Edmonton, Alberta
Canada T6G 2E3

R. T. Bell
Department of Zoology
Marsh Life Science Building
The University of Vermont
Burlington, Vermont
U.S.A. 05405

R. Davidson
Section of Entomology
Carnegie Museum of Natural History
4400 Forbes Avenue
Pittsburgh, Pennsylvania
U.S.A. 15213

T. L. Erwin
Department of Entomology
National Museum of Natural History
Smithsonian Institution
Washington, D.C.
U.S.A. 20560

R. Freitag
Department of Biology
Lakehead University
Thunder Bay, Ontario
Canada P7B 5E1

M. A. Ivie
Department of Entomology
1735 Neil Avenue
Ohio State University
Columbus, Ohio
U.S.A. 43210
Carabid Beetles of the West Indies

D. H. Kavanaugh
Department of Entomology
California Academy of Sciences
Golden Gate Park
San Francisco, California
U.S.A. 94118

J. K. Liebherr
Department of Entomology
Cornell University
Ithaca, New York
U.S.A. 14853

D. R. Maddison
Department of Entomology
University of Alberta
Edmonton, Alberta
Canada T6G 2E3

J. Mateu
Faculte des Sciences de Paris
Laboratoire d’Evolution des Etres Organises
105, Boulevard Raspail
Paris (VI), France

R. R. Murray
Department of Invertebrate Zoology
Milwaukee Public Museum
800 West Wells Street
Milwaukee, Wisconsin
U.S.A. 53233

G. R. Noonan
Department of Invertebrate Zoology
Milwaukee Public Museum
800 West Wells Street
Milwaukee, Wisconsin
U.S.A. 53233

L. L. Sims
Department of Entomology
National Museum of Natural History
Smithsonian Institution
Washington, D. C.
U.S.A. 20560

Quaest. Ent., 1984, 20 (4)
J. R. Spence
Department of Entomology
University of Alberta
Edmonton, Alberta
Canada T6G 2E3

N. E. Stork
British Museum (Natural History)
Department of Entomology
Cromwell Road
London S.W. 7, England

Shun-ichi Ueno
Department of Zoology
The National Science Museum
Ueno Park
Tokyo, Japan
INDEX TO NAMES OF TAXA
(Synonyms in italics)

<table>
<thead>
<tr>
<th>FAMILY GROUP TAXA</th>
<th>Callistinae, 386</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonici, 356</td>
<td>Callistini, 352, 356, 361, 386, 437</td>
</tr>
<tr>
<td>Agonina, 361, 364, 382–383, 397</td>
<td>Callistitae, 356, 386, 437</td>
</tr>
<tr>
<td>Agonini, 382–383, 393</td>
<td>Calophaenini, 357</td>
</tr>
<tr>
<td>Agridae, 422</td>
<td>Calosomina, 365</td>
</tr>
<tr>
<td>Amarotypini, 355</td>
<td>Calpohaenidae, 422</td>
</tr>
<tr>
<td>Amblystomi, 389</td>
<td>Camptonotini, 373</td>
</tr>
<tr>
<td>Ambytelini, 356</td>
<td>Carabidae, 352, 354, 357, 364, 366, 373, 376, 382, 386,</td>
</tr>
<tr>
<td>Amorphomerini, 356</td>
<td>399</td>
</tr>
<tr>
<td>Anaulactini, 394</td>
<td>Carabina, 365</td>
</tr>
<tr>
<td>Anchomenidae, 422</td>
<td>Carabinae, 354, 364, 422</td>
</tr>
<tr>
<td>Anchomenina, 383</td>
<td>Carabini, 352, 354, 359, 364–365, 422</td>
</tr>
<tr>
<td>Anchonoderinae, 393</td>
<td>Carabitae, 354, 364, 366, 422</td>
</tr>
<tr>
<td>Anchonoderini, 393</td>
<td>Caraboidea, 354</td>
</tr>
<tr>
<td>Anillina, 378</td>
<td>Caraboidea Limbata, 364</td>
</tr>
<tr>
<td>Anthiidae, 422</td>
<td>Caraboidea Simplicia, 364</td>
</tr>
<tr>
<td>Aniini, 356</td>
<td>Catapiesi, 382</td>
</tr>
<tr>
<td>Anthiitae, 356</td>
<td>Catapiiesini, 356, 361</td>
</tr>
<tr>
<td>Apenina, 397</td>
<td>Catascopina, 397</td>
</tr>
<tr>
<td>Aplotothoracina, 365</td>
<td>Ceroglossina, 365</td>
</tr>
<tr>
<td>Apotomidae, 422</td>
<td>Ceroglossini, 354</td>
</tr>
<tr>
<td>Apotomini, 355, 359</td>
<td>Chaetogenyini, 356, 361</td>
</tr>
<tr>
<td>Apotomitae, 355</td>
<td>Chlaeniidae, 422</td>
</tr>
<tr>
<td>Apticina, 375</td>
<td>Chlaeniini, 386</td>
</tr>
<tr>
<td>Ardistomina, 369, 371</td>
<td>Chrysomelidae, 396</td>
</tr>
<tr>
<td>Attini, 374</td>
<td>Cicindelinae, 366</td>
</tr>
<tr>
<td>Bascanini, 356</td>
<td>Cicindelini, 352, 354, 358, 366, 424</td>
</tr>
<tr>
<td>Bembidiidae, 422</td>
<td>Cicindelitae, 354, 357, 366, 423</td>
</tr>
<tr>
<td>Bembidiina, 378, 381</td>
<td>Cicindisini, 354, 358</td>
</tr>
<tr>
<td>Brachinidae, 373–374, 422</td>
<td>Clivinini, 352, 355, 369–371, 373, 426</td>
</tr>
<tr>
<td>Brachinina, 375</td>
<td>Cnemacanthidae, 422</td>
</tr>
<tr>
<td>Brachininae, 369</td>
<td>Cnemacanthini, 355, 360</td>
</tr>
<tr>
<td>Brachinini, 352, 355, 357, 364, 375, 428</td>
<td>Colliurini, 393, 395</td>
</tr>
<tr>
<td>Brachinitae, 355, 374–375, 428</td>
<td>Collyrinae, 366</td>
</tr>
<tr>
<td>Bradycellina, 388</td>
<td>Collyrini, 354</td>
</tr>
<tr>
<td>Broschidae, 422</td>
<td>Colydiidae, 376, 378</td>
</tr>
<tr>
<td>Brosicinae, 355</td>
<td>Coptoderina, 397</td>
</tr>
<tr>
<td>Broscini, 355, 359</td>
<td>Cratocarina, 388</td>
</tr>
<tr>
<td>Brosctae, 355</td>
<td>Crepidogastrini, 355, 374</td>
</tr>
<tr>
<td>Caelostomina, 383–384</td>
<td>Ctenodactyliidae, 422</td>
</tr>
<tr>
<td>Calleidina, 396–399</td>
<td>Ctenodactylini, 352, 357, 362, 392, 395, 442</td>
</tr>
<tr>
<td>Callidina, 398</td>
<td>Ctenodactylae, 356, 392, 442</td>
</tr>
<tr>
<td>Callistidae, 422</td>
<td></td>
</tr>
</tbody>
</table>

Quaest. Ent., 1984, 20 (4)
Ctenostomatini, 354, 357, 366
Ctenostomini, 356
Cuneiectini, 356
Cychrina, 365
Cychrini, 354, 359
Cyclosomidae, 422
Cyclosomini, 352, 357, 362, 394, 443
Cymbionotidae, 422
Cymbionotini, 355
Cymindina, 396
Disphaericini, 356
Dolichoderini, 374
Dromiina, 397
Drytidae, 422
Dryptini, 356, 362, 390–391
Dryptitae, 356, 390, 441
Dyschiriina, 369, 371
Elaphridae, 422
Elaphrini, 355
Elaphritae, 355
Enceladini, 352, 355, 359, 368, 425
Euchelini, 396
Euchroina, 383–384
Feroniidae, 422
Forcipatorina, 369, 371, 373
Galeritini, 352, 356, 390–392, 442
Galerudicina, 398
Gehringiidae, 422
Gehringiini, 355
Glyptidae, 422
Graphipterini, 357
Harpalidae, 422
Harpalina, 388–389
Harpalinae, 356, 364, 368, 381, 432
Harpalinae Impilae, 364
Harpalinae Piliferae, 364
Harpalini, 352, 356, 388, 439
Harpallitae, 356, 388, 439
Helluodini, 356
Helluonini, 352, 356, 363, 390
Hexagonini, 356
Hiletidae, 422
Hiletini, 355, 358
Hiletitae, 355
Hydrophilidae, 375
Hymenoptera, 372
Idiomorphini, 356
Lachnophorinae, 393
Lachnophorini, 352, 357, 363–364, 383, 392–393, 443
Lebidiina, 397–398
Lebiidae, 422
Lebiina, 399
Lebiitae, 357, 382, 392–393, 442
Leleupidiina, 391
Licindae, 422
Licinini, 352, 356, 363, 387, 438
Limnastina, 379
Loricerini, 354, 359
Loriceritae, 354
Loroceridae, 422
Loxandrina, 383, 385
Mantichorini, 354, 366
Masoreidae, 422
Masoreini, 352, 357, 363, 394, 444
Mastacina, 375
Megacephalini, 352, 354, 358, 366, 423
Melaenini, 355
Melaenitae, 355
Mellanodidae, 422
Mellanodini, 356
Meonidi, 382
Meonidini, 356
Metriidae, 422
Metriini, 355
Metriitae, 355, 373
Microtopina, 379
Migadopidae, 422
Migadopinii, 355, 359
Migadopitae, 355
Morionini, 352, 356, 362, 369, 376, 381–382, 432
Mormolycini, 396–397
Myrmicini, 373
Mystropomini, 355
Nebridae, 422
Nebriformes, 354
Nebrini, 354
Nebritae, 354
Noctuidae, 396
Nomiini, 382
Notiokasini, 354
Notiophilini, 354, 359
Nototylini, 355, 358, 373
Odacanthidae, 422
Odacanthini, 352, 357, 362, 392, 395, 444
Omphironidae, 422
Omphironini, 354, 357, 367, 376
Omphronitae, 354, 367
Omphreinae, 393
Oodina, 386
Oodini, 352, 356, 361, 386–387, 438
Opisthiini, 354
Orthogoniidae, 422
Orthogoniini, 356
Orthogoniitae, 356
Oxystomina, 373
Ozaenidae, 422
Ozaeninae, 373
Ozaenini, 352, 355, 358, 373–374, 427
Pamborini, 354
Panagaeidae, 422
Panagaeini, 352, 356, 360, 385, 437
Panagaeitae, 356, 385, 437
Patriziina, 391
Patrobiinae, 422
Patrobini, 356
Paussidae, 373, 422
Paussininae, 355, 373, 376, 427
Paussini, 355, 358, 373
Paussitae, 355, 358, 373, 375, 427
Peleciidae, 422
Peleciini, 356, 361
Pentagonicidae, 422
Pentagonicini, 352, 357, 363, 395, 444
Pericalidae, 422
Pericalina, 363, 396–398
Perigonidae, 422
Perigonini, 352, 357, 364, 393, 442
Perileptina, 377
Pheropsophina, 375
Platynina, 383
Pogonini, 352, 356, 360, 377, 429
Polyphaga, 376
Promecognathini, 355
Promecognathitae, 355
Protopaussini, 355, 373
Pseudomorphidae, 422
Pseudomorphini, 352, 355, 357, 368–369, 425
Pseudomorphitae, 355, 368, 425
Psydridae, 382
Psydrinae, 355, 366, 428
Psydrini, 355, 360, 382
Psydritae, 355
Pterostichidae, 422
Pterostichina, 382–384
Pterostichitae, 352, 356, 361–362, 364, 376, 381–384, 388, 393, 397, 432
Pyralidae, 396
Rhyssodini, 352, 356, 358, 368, 425
Rhyssoditae, 356, 367, 428
Salcediina, 373, 376
Scapterina, 370
Scaritidae, 422
Scaritina, 369–370
Scarititae, 355, 364, 368, 425
Scaritini, 352, 355, 369–370, 376, 425
Scarititae, 355, 359, 369, 376, 425
Selenophori, 389–390
Siagonidae, 422
Siagonini, 355
Siagonitae, 355, 368, 425
Sigonitae, 368
Sphodrina, 383
Stenolophina, 388
Systolosomini, 354, 358
Tachyina, 378–379
Tetragonoderini, 394
Thyreopteridae, 422
Thyreopterina, 397
Trachypachidae, 354, 358
Trachypachini, 354
Treichidae, 422
Treichitae, 356, 377, 429
Tropidoptera, 382
Tropidopterini, 356
Zabrini, 356, 362

Quaest. Ent., 1984, 20 (4)
Zolini, 356, 360
Zuphiidae, 422
Zuphiina, 391
Zuphiini, 352, 356, 363, 390–391, 441

GENERAE AND SUBGENERAE

Acamegonia Lapouge, 422
Acampalita Lapouge, 422
Actedium Motschulsky, 431
Actenonyx White, 395
Acupalpus Latreille, 388–389, 439
Acupalpus Thomson, 389
Adialampus Gozis, 370
Aephnidius MacLeay, 394–395, 444
Aepus LeConte, 399
Agasoma Ménétriers, 390, 441
Agonoderus Dejean, 439
Agonoleptus Casey, 439
Agonum (sensu stricto), 384
Agonum Bonelli, 383–384, 432
Agostenus Motschulsky, 437
Agra Fabricius, 362, 374, 395–396
Akephorus LeConte, 371, 426
Alkestis Csiki, 399
Allotriopus Bates, 436
Amara Bonelli, 362
Amblygnathus Dejean, 389, 441
Amblystus Motschulsky, 439
Americomaseus Csiki, 436
Amerizus Chaudoir, 431
Ameroglymmius Bell & Bell, 428
Anacolpodes Casey, 433
Anaplagiorrhysis Liebke, 444
Anatrichis (sensu stricto), 387
Anatrichis LeConte, 387, 438
Aanaulacus MacLeay, 395
Anchomenus auctorum, 432–433
Anchomenus Bonelli, 384
Anchomenus Samouelle, 432
Anchonodorus Reiche, 394, 443
Anchus LeConte, 433
Andrewesella Csiki, 399, 446
Anillaferonia Van Dyke, 436
Anisotarsus Dejean, 388
Anomoglossus Chaudoir, 437

Anthracus Motschulsky, 439
Antilliscaris Banninger, 370–371, 425
Apenes LeConte, 396–397, 445
Aphelegenia Chaudoir, 447
Apiodera Chaudoir, 444
Apioderella Csiki, 444
Apiderema Csiki, 444
Apotomus Illiger, 359
Apristus Chaudoir, 397, 445
Archeridius Seidlitz, 423
Arctoclinitidium Bell, 428
Ardistomaelius Kult, 373, 427
Ardistomis (sensu stricto), 371, 373
Ardistomis Kult, 373
Ardistomis Putzeys, 371–373, 427
Aretenaus Liebke, 443
Argutor Stevens, 436
Argyrobracteon Netolitzky, 431
Artrhrostictus auctorum, 390
Aspasiola Csiki, 399
Aspidoglossa Putzeys, 371–373, 427
Athrostictus Bates, 389–390, 441
Aulacopterus Gehin, 423
Aulacosomus Grundmann, 386, 437
Aureoplatus Netolitzky, 431
Autocarabus Seidlitz, 423
Axinophorus Dejean & Boisduval, 369, 425
Badister Clairville, 387
Barytachys Chaudoir, 380, 429
Bembidion Latreille, 377–378, 381, 430
Bembidionetolitzkya Strand, 431
Bembidium auctorum, 381
Blaptosoma Gehin, 422
Blechurus Motschulsky, 397, 445
Blemus LeConte, 381, 430
Blepharoplastaphus Netolitzky, 431
Bonius LeConte, 397, 445
Boreobia Tschitschérine, 436
Bothriopterus Chaudoir, 435
Brachinus Erwin, 375
Brachinus Weber, 375, 428
Brachylobus Chaudoir, 437
Brachynus auctorum, 375, 428
Brachythus Chaudoir, 435
Bracteomimus Lindroth, 431
<table>
<thead>
<tr>
<th>Genus</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bracteon</td>
<td>Bedel, 430</td>
<td></td>
</tr>
<tr>
<td>Bradycellus</td>
<td>Erichson, 389, 439</td>
<td></td>
</tr>
<tr>
<td>Brasiella</td>
<td>Rivalier, 367</td>
<td></td>
</tr>
<tr>
<td>Caelostomus</td>
<td>MacLeay, 383–384, 436</td>
<td></td>
</tr>
<tr>
<td>Calamata</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Callida</td>
<td>auctorum, 399, 446</td>
<td></td>
</tr>
<tr>
<td>Callipara</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Callisthenes</td>
<td>Fischer von Waldheim, 423</td>
<td></td>
</tr>
<tr>
<td>Callistriga</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Callitropa</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Callocallida</td>
<td>Csiki, 444</td>
<td></td>
</tr>
<tr>
<td>Callodrepa</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Callomorphus</td>
<td>C. & L., 395, 444</td>
<td></td>
</tr>
<tr>
<td>Callophagus</td>
<td>Haury, 423</td>
<td></td>
</tr>
<tr>
<td>Calosoma</td>
<td>Weber, 365, 422</td>
<td></td>
</tr>
<tr>
<td>Caneotula</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Camagonia</td>
<td>Lapouge, 422</td>
<td></td>
</tr>
<tr>
<td>Camptotoma</td>
<td>Reiche, 361</td>
<td></td>
</tr>
<tr>
<td>Carabomimus</td>
<td>Kolbe, 423</td>
<td></td>
</tr>
<tr>
<td>Carabosoma</td>
<td>Gehin, 422</td>
<td></td>
</tr>
<tr>
<td>Carabus</td>
<td>Linné, 365, 423</td>
<td></td>
</tr>
<tr>
<td>Casonia</td>
<td>Latreille & Dejean, 395, 444</td>
<td></td>
</tr>
<tr>
<td>Casoniella</td>
<td>Csiki, 444</td>
<td></td>
</tr>
<tr>
<td>Catrizida</td>
<td>Motschulsky, 422</td>
<td></td>
</tr>
<tr>
<td>Cattusira</td>
<td>Lapouge, 422</td>
<td></td>
</tr>
<tr>
<td>Catastomus</td>
<td>Casey, 439</td>
<td></td>
</tr>
<tr>
<td>Celaimorphus</td>
<td>Casey, 390, 440</td>
<td></td>
</tr>
<tr>
<td>Ceratoglossa</td>
<td>MacLeay, 372</td>
<td></td>
</tr>
<tr>
<td>Ceroglossus</td>
<td>Solier, 365</td>
<td></td>
</tr>
<tr>
<td>Chaenius</td>
<td>Bonelli, 386</td>
<td></td>
</tr>
<tr>
<td>Chelonodema</td>
<td>Laporte, 396, 446</td>
<td></td>
</tr>
<tr>
<td>Chincillenus</td>
<td>Netolitzky, 431</td>
<td></td>
</tr>
<tr>
<td>Chlaeniellus</td>
<td>Reitter, 437</td>
<td></td>
</tr>
<tr>
<td>Chlaenius</td>
<td>Csiki, 437</td>
<td></td>
</tr>
<tr>
<td>Chlaenius (sensu stricto)</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>Chlaenius Bonelli</td>
<td>386, 437</td>
<td></td>
</tr>
<tr>
<td>Chrysobracteon</td>
<td>Netolitzky, 430</td>
<td></td>
</tr>
<tr>
<td>Chrysostigma</td>
<td>Kirby, 422</td>
<td></td>
</tr>
<tr>
<td>Cicindela Linné</td>
<td>366, 424</td>
<td></td>
</tr>
<tr>
<td>Cicindela sensu lato</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Cicindelidia</td>
<td>Rivalier, 367</td>
<td></td>
</tr>
<tr>
<td>Cicindelius Bruch</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>Cincinalia</td>
<td>Casey, 432</td>
<td></td>
</tr>
<tr>
<td>Cincinalidia</td>
<td>Casey, 432</td>
<td></td>
</tr>
<tr>
<td>Clinidium (sensu stricto)</td>
<td>376</td>
<td></td>
</tr>
</tbody>
</table>

Quaest. Ent., 1984, 20 (4)
<table>
<thead>
<tr>
<th>Genus</th>
<th>Authors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distichus Motschulsky</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Drepanus Dejean</td>
<td>369, 425</td>
<td></td>
</tr>
<tr>
<td>Dromius Sloane</td>
<td>397, 445</td>
<td></td>
</tr>
<tr>
<td>Dromochorus Guérin-Ménéville</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Dyschiridus Jeannel</td>
<td>371, 426</td>
<td></td>
</tr>
<tr>
<td>Dyschirius Bonelli</td>
<td>369, 371, 426</td>
<td></td>
</tr>
<tr>
<td>Dyschromus Chaudoir</td>
<td>383-384, 435</td>
<td></td>
</tr>
<tr>
<td>Dyscolus Dejean</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>Dysidius Chaudoir</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Echimuthus Leach</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>Eidocompsus Erwin</td>
<td>380, 429</td>
<td></td>
</tr>
<tr>
<td>Elaphropus Motschulsky</td>
<td>379-380, 429</td>
<td></td>
</tr>
<tr>
<td>Ellipsoidera Dokhtouroff</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Enaphorus LeConte</td>
<td>391, 441</td>
<td></td>
</tr>
<tr>
<td>Enceladus Bonelli</td>
<td>368, 425</td>
<td></td>
</tr>
<tr>
<td>Eotachys Jeannel</td>
<td>381, 430</td>
<td></td>
</tr>
<tr>
<td>Epicarabus Reitter</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>Eucaerus LeConte</td>
<td>363, 393-394, 443</td>
<td></td>
</tr>
<tr>
<td>Eucamaragnathus Jeannel</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>Eucarabus Gehin</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Eudromus Kirby</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Euceratia Casey</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Euharpalus Hatch</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Eunota Rivalier</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Eupalatus Schmidt-Goebel</td>
<td>372, 426</td>
<td></td>
</tr>
<tr>
<td>Eupedetromus Netolitzky</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Eupharalops Casey</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Euphoticus Horn</td>
<td>394, 443</td>
<td></td>
</tr>
<tr>
<td>Euproxanthus Leng & Mutchler</td>
<td>396, 399, 446</td>
<td></td>
</tr>
<tr>
<td>Euproctus Solier</td>
<td>399, 446</td>
<td></td>
</tr>
<tr>
<td>Euphilus Chaudoir</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>Eurycoleus Chaudoir</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>Eurydactylus Laferté-Sénéclère</td>
<td>386, 437</td>
<td></td>
</tr>
<tr>
<td>Euryderus LeConte</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Euryperis Motschulsky</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>Eurytrachelus Motschulsky</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Euvelodontum Gehin</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Eutogonius Solier</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>Feronia Latreille</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Feronia Casey</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>Ferepinidae Riley</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Foveobracteon Netolitzky</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Furcicampia Netolitzky</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Galipectes Jeannel</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>Galerita Fabricius</td>
<td>374, 392, 442</td>
<td></td>
</tr>
<tr>
<td>Galeritella Jeannel</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>Galeritiola Jeannel</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>Galeritula Strand</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>Galerucidia Chaudoir</td>
<td>398, 446</td>
<td></td>
</tr>
<tr>
<td>Gastrellarius Casey</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Gastroptera Casey</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>Genioschizus Whitehead</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>Glaesus Casey</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Glycerius Casey</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>Glyptoderus Laferté-Sénéclère</td>
<td>386, 437</td>
<td></td>
</tr>
<tr>
<td>Glyptoglossus Bertkau</td>
<td>384, 435</td>
<td></td>
</tr>
<tr>
<td>Glyptolenus Bates</td>
<td>383-384, 435</td>
<td></td>
</tr>
<tr>
<td>Goniolepus Casey</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>Gonoderus Motschulsky</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Gynandropus Dejean</td>
<td>390, 440</td>
<td></td>
</tr>
<tr>
<td>Halocoryza Alluada</td>
<td>372, 427</td>
<td></td>
</tr>
<tr>
<td>Hammatomorus Chaudoir</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>Hapioelus Chaudoir</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Harpalomerus Casey</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>Harpalus Latreille</td>
<td>389-390, 439</td>
<td></td>
</tr>
<tr>
<td>Helluoaropa Laporte</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Hemipalpus Gehin</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Hemiplatynus Casey</td>
<td>384, 433</td>
<td></td>
</tr>
<tr>
<td>Hemipelops Casey</td>
<td>390, 440</td>
<td></td>
</tr>
<tr>
<td>Heteromorpha Kirby</td>
<td>369, 425</td>
<td></td>
</tr>
<tr>
<td>Hirmoplastaphus Netolitzky</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Holciophorus LeConte</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Hologaeus Ogueta</td>
<td>385, 437</td>
<td></td>
</tr>
<tr>
<td>Homalops Motschulsky</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>Homoeocarabus Reitter</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Hyboptera Csiki</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>Hydriomericus Casey</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Hydriomorus LeConte</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Hyphyperes Chaudoir</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Idiochroma Bedel</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>Isocasnonia Csiki</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>Isoclinova Kult</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td>Isomorpha Jenecl</td>
<td>388, 438</td>
<td></td>
</tr>
<tr>
<td>Isotachys Casey</td>
<td>381, 430</td>
<td></td>
</tr>
<tr>
<td>Isotenia Lapouge</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Lachnolophipus LeConte</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Lachnophorus Dejean</td>
<td>394, 443</td>
<td></td>
</tr>
<tr>
<td>Lagurus Chaudoir</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>Lampiras Bonelli</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>Lasioharpalus Reitter</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>Lebia Latreille</td>
<td>395-396, 399, 446</td>
<td></td>
</tr>
<tr>
<td>Carabid Beetles of the West Indies</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Lebida Motschulsky, 447</td>
<td>Metabola Chaudoir, 447</td>
<td></td>
</tr>
<tr>
<td>Lebidia Morawitz, 398</td>
<td>Metallicia Motschulsky, 431</td>
<td></td>
</tr>
<tr>
<td>Lecanites Lutschek, 435</td>
<td>Metallosomus auctorum, 433</td>
<td></td>
</tr>
<tr>
<td>Leiotachys Jeannel, 380, 429</td>
<td>Metatelsarius Tschitschérine, 436</td>
<td></td>
</tr>
<tr>
<td>Leptoperonia Casey, 435</td>
<td>Metaxidius Chaudoir, 390</td>
<td></td>
</tr>
<tr>
<td>Leptotachys Jeannel, 380, 429</td>
<td>Metriochela Thomson, 423</td>
<td></td>
</tr>
<tr>
<td>Leptotracelus Latreille, 392, 442</td>
<td>Mexiclinidium Bell & Bell, 428</td>
<td></td>
</tr>
<tr>
<td>Leucagonum Casey, 433</td>
<td>Microgobius Casey, 433</td>
<td></td>
</tr>
<tr>
<td>Leuchydrium Casey, 431</td>
<td>Microtylosoma Breuning, 422</td>
<td></td>
</tr>
<tr>
<td>Lia Eschscholtz, 446</td>
<td>Microleste Schmidt-Goebel, 397, 445</td>
<td></td>
</tr>
<tr>
<td>Lichnocarabus Reitter, 423</td>
<td>Micromaseus Casey, 436</td>
<td></td>
</tr>
<tr>
<td>Limnastis auctorum, 381, 430</td>
<td>Micromelomalus Casey, 431</td>
<td></td>
</tr>
<tr>
<td>Limonastis Motschulsky, 433</td>
<td>Microtachys Casey, 381, 430</td>
<td></td>
</tr>
<tr>
<td>Lioecellus Motschulsky, 439</td>
<td>Microthylax Rivalier, 367</td>
<td></td>
</tr>
<tr>
<td>Lioecellus Tschitscherine, 439</td>
<td>Mimocasnonia Csiki, 444</td>
<td></td>
</tr>
<tr>
<td>Liocosmis Casey, 431</td>
<td>Mioptachys Bates, 378–380, 429</td>
<td></td>
</tr>
<tr>
<td>Lionepeha Casey, 431</td>
<td>Miscoephalus Chaudoir, 390</td>
<td></td>
</tr>
<tr>
<td>Liotachys Bates, 380</td>
<td>Monoferonia Casey, 435</td>
<td></td>
</tr>
<tr>
<td>Listropus Putzeys, 370, 427</td>
<td>Morio auctorum, 382, 432</td>
<td></td>
</tr>
<tr>
<td>Litoreobracteon Netolitzky, 431</td>
<td>Morion Latreille, 382, 432</td>
<td></td>
</tr>
<tr>
<td>Lophwa Stephens, 431</td>
<td>Mormolyce Hagenbach, 397</td>
<td></td>
</tr>
<tr>
<td>Lophogenius Motschulsky, 370</td>
<td>Nemotarsus LeConte, 362, 396</td>
<td></td>
</tr>
<tr>
<td>Lophoglossus LeConte, 436</td>
<td>Neobrachinus Erwin, 375, 428</td>
<td></td>
</tr>
<tr>
<td>Loriceria Latreille, 359</td>
<td>Neocalosoma Breuning, 422</td>
<td></td>
</tr>
<tr>
<td>Loxandrus LeConte, 383, 385, 436</td>
<td>Neocarabina Hatch, 423</td>
<td></td>
</tr>
<tr>
<td>Loxopeza Chaudoir, 446</td>
<td>Neocarabus Lapouge, 423</td>
<td></td>
</tr>
<tr>
<td>Lymnastis Motschulsky, 378–379, 381, 430</td>
<td>Neodyrypta Basilewsky, 362</td>
<td></td>
</tr>
<tr>
<td>Lymneops Casey, 432</td>
<td>Neoreicheia Kult, 371–373, 427</td>
<td></td>
</tr>
<tr>
<td>Lypraphora Moschulsky, 436</td>
<td>Neotachys Kult, 381, 430</td>
<td></td>
</tr>
<tr>
<td>Lyprostenia Lapouge, 422</td>
<td>Nestra Motschulsky, 443</td>
<td></td>
</tr>
<tr>
<td>Macracanthus Chaudoir, 394–395, 444</td>
<td>Notaphus Stephens, 431</td>
<td></td>
</tr>
<tr>
<td>Macragonum Casey, 433</td>
<td>Nototylus Schaum, 358</td>
<td></td>
</tr>
<tr>
<td>Masoreus auctorum, 444</td>
<td>Ochthodromus LeConte, 430</td>
<td></td>
</tr>
<tr>
<td>Mayaferonia Ball & Roughley, 436</td>
<td>Odacantha Paykull, 444</td>
<td></td>
</tr>
<tr>
<td>Megacephala Latreille, 366, 423</td>
<td>Odacantha Perty, 392, 442</td>
<td></td>
</tr>
<tr>
<td>Megalostylus Chaudoir, 385, 436</td>
<td>Odacanthelina Liebke, 444</td>
<td></td>
</tr>
<tr>
<td>Megapangus Casey, 439</td>
<td>Odacanthonia Csiki, 444</td>
<td></td>
</tr>
<tr>
<td>Megodonius Solier, 423</td>
<td>Odontium LeConte, 430</td>
<td></td>
</tr>
<tr>
<td>Melanagonum Casey, 433</td>
<td>Oenapheloxy Ball, 446</td>
<td></td>
</tr>
<tr>
<td>Melanus Bonelli, 436</td>
<td>Omalomerpa Motschulsky, 447</td>
<td></td>
</tr>
<tr>
<td>Melomalus Casey, 431</td>
<td>Omaseidius Jeannel, 435</td>
<td></td>
</tr>
<tr>
<td>Melvilleus Ball, 436</td>
<td>Omaseulus Lutschek, 436</td>
<td></td>
</tr>
<tr>
<td>Menidius Chaudoir, 446</td>
<td>Omophron Latreille, 357, 367</td>
<td></td>
</tr>
<tr>
<td>Meotachys Erwin, 380</td>
<td>Omecha Chaudoir, 447</td>
<td></td>
</tr>
<tr>
<td>Merochlaenius Grundmann, 437</td>
<td>Oxymus Lapouge, 423</td>
<td></td>
</tr>
</tbody>
</table>

Quaest. Ent., 1984, 20 (4)
Oodes Bonelli, 387, 438
Oodiellus Chaudoir, 387, 438
Oodinus Motschulsky, 387, 438
Opadius Casey, 440
Opheonia Klug, 395, 445
Opheonus Stephens, 439
Ophryodactylus Chaudoir, 433
Ophryogaster Chaudoir, 436
Opilidia Rivalier, 367
Oreocarabus Gehin, 423
Orsonjohnsonus Hatch, 435
Oxydrepanus Putzeys, 371-373, 427
Pachychlaenius Grundmann, 437
Panagaeus (sensu stricto), 385
Panagaeus Latreille, 385, 437
Parabophia Casey, 431
Parabracteon Notman, 430
Paracalosoma Breuning, 422
Paracarabus Lapouge, 423
Paracalosoma Kult, 372, 426
Paracollinus Liebke, 445
Paracollius Liebke, 445
Paraferonia Casey, 436
Paragonum Casey, 433
Paralimnastis Jeannel, 381, 430
Parallelemorphus Motschulsky, 371
Paranchomenus Casey, 432
Parapoecilus Jeannel, 435
Parargutor Casey, 435
Paratachys Casey, 380–381, 430
Paratropa Lapouge, 422
Pardileus Gozis, 439
Pelmatus Motschulsky, 437
Pelecium Kirby, 361
Pentacomaia Bates, 424
Pentagonica Schmidt-Goebel, 363, 395, 444
Pericompus (sensu stricto), 380
Pericompus LeConte, 380, 429
Perigona (sensu stricto), 393
Perigona Laporte, 393, 443
Perileptus Schaum, 377, 429
Peristethus LeConte, 436
Peronoscelis Chaudoir, 394, 443
Peryphodes Casey, 431
Peryphona Netolitzky, 431
Peryphus Stephens, 431
Petrocharis Ehlers, 378, 430
Phaeoxantha Chaudoir, 423
Pharalus Casey, 439
Pharamecomorphus Motschulsky, 371
Pheropsophidius Hubenthal, 428
Pheropsophus (sensu stricto), 375
Pheropsophus Solier, 374, 428
Pheryphes Casey, 436
Pheuginus Motschulsky, 439
Philochthemphanes Netolitzky, 431
Philochthus Stephens, 431
Philodes LeConte, 439
Philophaga Motschulsky, 399, 446
Phloeoxena Chaudoir, 398, 446
Pisius LeConte, 436
Plagiorrhysis Chaudoir, 445
Planetus MacLeay, 390
Plataphodes Ganglbauer, 431
Plataphus Motschulsky, 431
Platydurus Kirby, 436
Platynella Casey, 384
Platynidius Casey, 433
Platynomicrus Casey, 433
Plectographa Rivalier, 367
Plectralidus Casey, 439
Plesioglymmius Bell and Bell, 376–377, 428
Pleurogenius Motschulsky, 371
Plocinionus Latreille & Dejean, 399, 446
Poecilus Bonelli, 435
Pogonidium Ganglbauer, 431
Pogonodaptus Horn, 388–389, 439
Polpochila Solier, 388
Polycheloma Madge, 446
Polyderidius Jeannel, 381, 430
Polyderis Motschulsky, 380–381, 430
Polydistichus Bonelli, 390
Pristoscelis Chaudoir, 436
Procollius Liebke, 445
Progalaterina Jeannel, 391–392, 442
Protainoa Bell & Bell, 428
Protopheropsophus Hubenthal, 428
Pseudanchus Casey, 432
Pseudanomoglossus Bell, 437
Pseudaportor Casey, 436
Pseudacasonia Liebke, 445
Pseudochryobius Motschulsky, 436
Pseudoferonina Ball, 436
Pseudolagarus Lutschnik, 436
Pseudomaseus Chaudoir, 436
Pseudomorpha Kirby, 357, 368-369, 425
Pseudophonus Motschulsky, 439
Pseudoplagiorrhitis Liebke, 445
Pterostichus (sensu stricto), 384
Pterostichus Bonelli, 382-384, 435
Punctagonum Grey, 433
Refonia Casey, 435
Reichardtula Whitehead, 372
Rembus Dejean, 438
Rhadin LeConte, 384, 433
Rhagocrepis Eschscholtz, 392, 442
Rhomboidea Reiche, 395, 444
Scaphinotus Latreille, 359
Scaris Chaudoir, 371
Scarites (sensu stricto), 370-371
Scarites Fabricius, 370-371, 425
Scaritodes Chaudoir, 370
Schizogenius Putzeys, 370-372, 427
Scopodes Erichson, 395
Selenallus Casey, 390, 440
Selenophorus Dejean, 389-390, 440
Semiardistomis Kult, 373, 427
Semicamph Netolitzky, 431
Semiclivina Kult, 372, 426
Sericoclaenius Grundmann, 437
Setalis Laporte, 384
Semicampa Kravitz, 398, 446
Spathicus Nieter, 443
Sphaeracr Say, 392, 442
Sphaerotachys Muller, 380, 429
Spongoloba Chaudoir, 399
Stenocellus Casey, 439
Stenocrennus Mannerheim, 433
Stenocrepis (sensu stricto), 387

Quaest. Ent., 1984, 20 (4)
Trechnephia Casey, 431
Trepanedoris Netolitzky, 431
Trepanotachys Alluaud, 380, 429
Trichoplataphus Netolitzky, 431
Triliarthrus Casey, 439
Upocompus Erwin, 380
Xystosomus Schaum, 378–379
Zophium Gistl, 391, 441
Zoyphium Motschulsky, 391, 441
Zuphiosoma Laporte, 391, 441
Zuphium Latreille, 391, 441

SPECIES AND SUBSPECIES

abdominale Gehin, Calosoma, 423
abruptus Darlington, Paratachys, 430
acuniae Mutchler, Cicindela, 424
acuniae Darlington, Platynus, 433
acutipennis Dejean, Megacephala, 423
addita Darlington, Clivina, 426
adonia Laporte, Megacephala, 423
adustipennis Erwin, Brachinus, 428
aequinoctialis Chaudoir, Platynus, 433
aequinoctialis Linné, Pheropsophus, 374–375, 428
aerata Putzeys, Aspidpglossa, 427
aeratus Reiche, Selenophorus, 440
affine Say, Bembidion, 432
agilis Laferté-Sénectère, Stenocrepis, 438
agonella Darlington, Platynus, 433
albipes Bates, Pentagonica, 444
albipes LeConte, Paratachys, 430
alternans Chaudoir, Platynus, 433
alternans Dejean, Selenophorus, 440
alticola Darlington, Ardistomis, 427
altifluminis Darlington, Platynus, 433
amaroides Dejean, Oodes, 438
americana Darlington, Lymnastis, 430
americana Linné, Galerita, 442
americanus Motschulsky, Pentagonica, 444
americans Darlington, Lymnastis, 381
americana Dejean, Zuphium, 441
amone Darlington, Platynus, 433
aneocupreus Dejean, Selenophorus, 440
antiguanus Leng & Mutchler, Megacephala, 424
apicale Jacquelin du Val, Bembidion, 432
apicalis Darlington, Thalpius, 441
apicalis Fleutiaux & Sallé, Lebia, 447
aptera Darlington, Apenes, 445
arenaria Darlington, Halocoryza, 427
argentata Fabricius, Cicindela, 424
arimao Darlington, Schizogenius, 427
armata Laporte, Coptia, 385
armatus Laporte, Calosoma, 423
arrogans Liebke, Thalpius, 441
auca Ogueta, Panagaeus, 437
atripennis Putzeys, Ardistomis, 427
atorufa Gundlach, Pentagonica, 444
autumnalis Bates, Mioptachys, 429
bahamensis Darlington, Calleida, 446
baha Liebke, Galerita, 442
baragua Darlington, Platynus, 434
basilicus Chevolat, Carabus, 365, 423
beauvoisi Chaudoir, Galerita, 442
beauvoisi Dejean, Selenophorus, 440
beckwithi Stephens, Scarites, 426
bicinctus Hope, Somotrichus, 446
bicolor Leng & Mutchler, Pentagonica, 444
bicolor Notman, Polochionus, 446
bierigi Liebke, Thalpius, 441
bierigi Liebke, Zuphium, 441
biguttata Putzeys, Clivina, 426
bipustulata Fabricius, Clivina, 426
biramosa Darlington, Platynus, 434
biramosa transcribao Darlington, Platynus, 434
biramosa uniramosa Darlington, Platynus, 434
bisignata Leng & Mutchler, Clivina, 426
blandulus Schaum, Pericompus, 429
boisduvali Gistl, Megacephala, 423
boops Dejean, Cicindela, 424
boroquense Bell, Clinidium, 428
bradycellinus Hayward, Tachys, 430
brasiliense Dejean, Morion, 382
brevicarinatus Putzeys, Oxydrepanus, 427
brevicillus (Chevolat), Macracanthus, 395, 444
bromeliarum Darlington, Platynus, 434
bruesi Darlington, Platynus, 434
bruneri Darlington, Platynus, 434
brunnea Dejean, Platynus, 434
brunneus Laporte, Brachinus, 428
bucheri Darlington, Platynus, 434
calathina Darlington, Platynus, 434
capito Bates, Polyderis, 430
carabiai Darlington, Platynus, 434
cardini Leng & Mutchler, Cicindela, 424
carib Darlington, Paratachys, 430
caribbeana Darlington, Pseudomorpha, 425
cariniger Putzeys, Selenophorus, 440
carolina Linné, Megacephala, 423
carolinensis Latreille, Megacephala, 424
caymanensis Darlington, Calleida, 446
celeris Dejean, Loxandrus, 436
centralis Darlington, Dyschromus, 435
cchalites Say, Pterostichus, 436
cchalybaeus Dejean, Platynus, 434
cchalybaeus Dejean, Glyptolonus, 435
cchalybaeus Dejean, Selenophorus, 440
cchauldori Ball, Stenognathus, 398
chelomphal Katki & Reed, Bembidion, 432
chiolinoi Bell, Clinidium, 428
chlorocapitata Mannerheim, Cicindela, 425
cicita Chaudoir, Morion, 438
cinchonae Darlington, Platynus, 434
cinclus Putzeys, Selenophorus, 440
circumcinctus Say, Chlaenius, 438
clientula Case, Agonum, 433
collina Case, Cicindela, 424
columbus Darlington, Perileptus, 429
costa Putzeys, Aspidoglossa, 427
compactus Bell & Bell, Plesioglymmius, 428
complanatus Fabricius, Pheropsophus, 428
coloreus Darlington, Platynus, 434
costularis Darlington, Stenomorphus, 390, 441
cubanum Darlington, Bembidion, 432
cubanum Liebke, Zuphium, 442
cubanum Chaudoir, Chlaenius, 438
cubanum Chaudoir, Pseudapin, 441
cubanum Darlington, Bradycellus, 439
cubanum Darlington, Stenomorphus, 390, 441
cubanum Tschitscherine, Loxandrus, 436
cubax Darlington, Paratachys, 430
cubensis Darlington, Platynus, 434
cubensis Darlington, Pterostichus, 436
cuprascens Motschulsky, Platynus, 434
cuprascens Roeschke, Calosoma, 423
cupreonicans Sturm, Pterostichus, 436
cuprinus Dejean, Selenophorus, 440
cupripennis Chaudoir, Dyschromus, 435
curvicosta Chaudoir, Clinidium, 428
cyano-nigra Chaudoir, Megacephala, 423
cyanolimbatus Chaudoir, Ardistomis, 427
cyanoporus Darlington, Selenophorus, 440
cyanescens Motschulsky, Agonum, 433
cycheira Darlington, Platynus, 434
danforthi Darlington, Scarites, 426
darlingtoni Bänninger, Scarites, 426
darlingtoni Bell, Clinidium, 428
darlingtoni Mutchler, Bembidion, 432
dealata Darlington, Phloeoxena, 446
deceptor Darlington, Pseudapin, 441
decipiens Dejean, Bembidion, 432
decolor Chaudoir, Calleida, 446
delechi Chaudoir, Platynus, 434
delanejyi Fleutiaux & Sallé, Pachytele, 439
delicata Darlington, Apenes, 445
denticollis Chaudoir, Scarites, 426
dentifer Darlington, Perileptus, 429
dentiger LeConte, Dyschirius, 426
dentipes Dejean, Clivina, 426
dimidiata Chaudoir, Galerudicia, 446
discopunctatus Dejean, Selenophorus, 440
divisa Darlington, Pentagonica, 444
donicanus Darlington, Paratchys, 430
donicensis Chaudoir, Omophron, 367
dorsalis Brulle, Thalpius, 441
dorsalis castissima Bates, Cicindela, 424
dorsalis Fabricius, Leptotrachelus, 442
dorsalis Say, Cicindela, 424
dorsalis venusta Laferté-Senéctère, Cicindela, 424
dubius Putzeys, Selenophorus, 440
duodecimstriata Chevrolat, Stenocrepsis, 438
effeminate Darlington, Coptia, 437
egaensis Thomson, Cicindela, 424
eggeri Ehlers, Stylulus, 430
elegans Chaudoir, Calleida, 446
elegantulus Laferté-Sénéctère, Pericompus, 429
elevatus Fabricius, Somotruchus, 446
eclipita Chaudoir, Platynus, 434
elongata Chaudoir, Platynus, 434
elongatulum auctorum, Agonum, 433
elongatulus Putzeys, Ardistomis, 427
ensenadae Mutchler, Tachys, 430
erthrodera Brullé, Galerita, 442
erthrocerus LeConte, Dyschirius, 426
estriata Darlington, Platynus, 434
exaratus Laferté-Sénéctère, Chlaenius, 437
excisus Putzeys, Selenophorus, 441
expansa Casey, Diplocheila, 438
extensicolle cubanum Darlington, Agonum, 433
extensicolle Say, Agonum, 433
faber Darlington, Platynus, 434
fallax Dejean, Bembidion, 432
fasciatus Say, Panagaeus, 437
fastidiosus Laferté-Sénéctère, Bembidion, 432
femorals Chaudoir, Stenocrepsis, 438
festinans Casey, Bradycellus, 439
festiva Dejean, Coptodera, 446
filax Darlington, Paratchys, 430
flavilabris cubanus Darlington, Selenophorus, 440
flavilabris Dejean, Selenophorus, 440
flavipes LeConte, Pentagonica, 444
flavipes picipes Darlington, Pentagonica, 444
floridanus Horn, Chlaenius, 438
floridanus LeConte, Loxandrus, 437
forreri Bates, Carabus, 365
fosser Degeer, Scarites, 426
fractilinea Darlington, Platynus, 434
fratrorum Darlington, Platynus, 434
frenata Chaudoir, Lebia, 447
frenata chevrolati Blackwelder, Lebia, 447
gaudens Casey, Agonum, 433
geniculata Bates, Phloeoxena, 398
georgiae Palisot, Morion, 382
gibba Darlington, Lebia, 447
gigas Bonelli, Enceladus, 368, 425
gilvipes Chaudoir, Stenocrepsis, 438
gilvipes Mannerheim, Brachinus, 428
glabrella Motschulsky, Perigona, 443
gracilis Casey, Stenophorus, 439
grimmi Sturm, Harpalus, 440
grossus Say, Euryderus, 390
guadeloupensis Fleutiaux & Sallé, Ambygnathus, 441
guadeloupensis Fleutiaux & Sallé, Cicindela, 425
guadeloupensis Fleutiaux & Sallé, Perigona, 443
guadeloupensis Fleutiaux & Sallé, Selenophorus, 440
guadeloupensis Gory, Apenes, 445
guadeloupensis Kult, Ardistomis, 427
guadeloupensis Putzeys, Aspidoglossa, 427
guerin Gory, Cicindela, 424
guildingi Kirby, Clinidium, 428
gundlachi Chaudoir, Chlaenius, 438
gundlachi Darlington, Colliuris, 445
Carabid Beetles of the West Indies

Quaest. Ent., 1984, 20 (4)
megacephalus Hlavac, Scarites, 426
melanaria Erichson, Galerita, 442
memnonia Dejean, Platynus, 434
mennevillei Chaudoir, Chlaenius, 386
metallica Dejean, Stenocrepis, 438
mexicana Gray, Megacephala, 424
mexicanum Chaudoir, Zuphium, 442
mexicanus Chaudoir, Anatrichis, 438
micans Chaudoir, Pterostichus, 436
microps Darlington, Perigona, 443
minutus Darlington, Perileptus, 429
misella Chaudoir, Cicindela, 424
montana Darlington, Galerita, 442
montana Mutchler, Scarites, 426
morantensis Erwin, Pericompsus, 430
mundus Putzeys, Selenophorus, 440
mutans Darlington, Loxandrus, 436
mutchleri Banning, Scarites, 426
nana inornata, Tachyta, 380
nasutus Schaufuss, Stylulus, 430
niger Gory, Euphoticus, 433
niger Randall, Chlaenius, 437
nigricornis Darlington, Pentagonica, 444
nigrita Darlington, Lebia, 447
nigroclarus Darlington, Ardistomis, 427
nitudepis Darlington, Ardistomis, 427
nose Darlington, Collurius, 445
nocticolor Darlington, Loxandrus, 437
noctis Darlington, Miptachys, 429
noserriatus Darlington, Selenophorus, 440
nubicola Darlington, Lebia, 447
oblatus Brullé, Phoropsophus, 428
oblonga Casey, Diplocheila, 438
obscura Laporte, Captodera, 446
obscurata Chaudoir, Megacephala, 424
obscuratum Chaudoir, Agonum, 433
occidentalis (Olivier), Galerita, 392
occidentalis Klug, Megacephala, 424
ochrepezu Say, Stenolophus, 439
olivacea Chaudoir, Cicindela, 424
opaca LeConte, Apenes, 445
opus Chaudoir, Dyschromus, 435
orientale Dejean, Morion, 382
ovalis Darlington, Apenes, 445
pallens Fabricius, Polochionus, 446
pallida Chevrolat, Pachytes, 427
pallidus Erwin, Brachinus, 375
pallipennis LeConte, Perigona, 443
pallipes Brullé, Stenocrepis, 438
pallipes Fabricius, Apenes, 445
pallipes Fleutiaux & Sallé, Cicindela, 424
pallipes LeConte, Pentagonica, 444
pallipes Reiche, Stenocrispis, 438
palustris Darlington, Selenophorus, 438
panamensis Laferté-Sénéctère, Panagaeus, 435
parallela Dejean, Apenes, 445
parallela inaguæ Darlington, Apenes, 445
particeps Casey, Bembidion, 432
parumpunctatus Dejean, Selenophorus, 440
parviceps Darlington, Micratopus, 430
parvus Darlington, Selenophorus, 440
paulax Darlington, Paratachys, 430
pavens Darlington, Platynus, 434
perezi Darlington, Dyschromus, 435
perplexus Dejean, Chlaenius, 437
philipi Erwin, Pericompsus, 430
picea Darlington, Perigona, 443
picea Fleutiaux & Sallé, Pentagonica, 444
piceolus Laferté-Sénéctère, Paratachys, 430
piceus Motschulsky, Anatrichis, 438
picta Chaudoir, Collurius, 445
picta conclusa Liebke, Collurius, 445
picta extrema Liebke, Collurius, 445
pinaeensis Darlington, Platynus, 434
plagiata Darlington, Phloeoxena, 446
planum Chevrolat, Clinidium, 428
planus Olivier, Phoropsophus, 428
platycephalus Reichardt, Phoropsophus, 375
poeyi Chevrolat, Chlaenius, 438
poeyi Jacquelin du Val, Microlestes, 446
porcata Klug, Galerita, 442
portoricense Darlington, Bembidion, 432
portoricans Darlington, Apenes, 445
portoricans Darlington, Phloeoxena, 446
portoricans Liebke, Collurius, 445
pretiosa Chaudoir, Calleida, 446
procera Casey, Diplocheil a, 438
propinquus Putzeys, Selenophorus, 440
proximum Harris, Agonum, 433
pubescens aeneolus Bates, Euphor icus, 443
pubescens Dejean, Euphor icus, 443
puberulus Putzeys, Selenophorus, 440
puertoricensis Mutchler, Selenophorus, 440
puncticeps compacta Darl onton, Platynus, 434
puncticeps Dejean, Platynus, 434
puncticollis Putzeys, Amblygnathus, 441
punctifrons Chaudoir, Caelostomus, 436
punctus Darlington, Platynus, 434
puntifrons Chaudoir, Caelostomus, 384
purrupurae Fleutiaux & Sallé, Apenes, 445
putzeysi Fleutiaux & Sallé, Par atachys, 430
pygmaeus Dejean, Thalpius, 441
pyritosus Dejean, Selenophorus, 440
quadrimaculata Palisot de Beauvois, Clivina, 426
quadrisignatus Chevrolat, Panagaeus, 437
ramoni Darlington, Platynus, 434
ramosi Darlington, Selenophorus, 441
ramdeni Darlington, Ardistomis, 427
rectangulus LeConte, Loxandrus, 436
reichei Putzeys, Pericompsus, 429
reicheoides Darlington, Oxydrepanus, 427
ridiculus Schaufuss, Polyderis, 430
rivieri Reichardt, Phero sophus, 374
rostratus Darlington, Pogon adaptus, 439
royi Darlington, Platynus, 344
rubriventris LeConte, Dyschirius, 426
rubricollis Dejean, Calleida, 446
ruci llum Darlington, Bembidion, 432
ruficollis Dejean, Galerita, 442
rufipes Dejean, Colliuris, 445
rufipes insignis Chaudoir, Colliuris, 445
rufiventris Dejean, Cicindela, 424
rufoclarus Darlington, Ardistomis, 427
rufus Putzeys, Oxy drepanus, 427
rutilans confusa Chaudoir, Megace phala, 424
rutilans infuscata Mannerheim, Megacephala, 424
rutilans Thomson, Megacephala, 424
rutilus Chevrolat, Diplochaetus, 429
salebrosus Liebke, Pseudap tinus, 441
saucyi Schaupp, Cicindela, 424
sauricollis Darlington, Coptia, 437
sayi Brullé, Pterostichus, 436
sayi Dejean, Calosoma, 423
schaefferi Horn, Cicindela, 424
schwarzi Darlington, Phloeoxena, 446
scripta Darlington, Platynus, 434
scriptella Darlington, Platynus, 434
sellanus Darlington, Bradycellus, 439
sellensis Darlington, Platynus, 434
semicrenata Chaudoir, Aspidoglossa, 427
sericeus Darlington, Apri stus, 445
serpens LeConte, Cicindela, 425
sigmoidea Chaudoir, Cicindela, 425
sigmoidea LeConte, Cicindela, 425
simplex Chevrolat, Clivina, 426
simplex LeConte, Agonum, 433
simplicicollis Darlington, Glyptolenus, 435
sinuatus Gyllenhal, Selenophorus, 441
solitarius Darlington, Selenophorus, 441
sparsum Bates, Bembidion, 432
spinipes Sulzer, Scarites, 426
splendida Dokhtouroff, Megace phala, 424
splendidum Dejean, Calosoma, 423
spretum Dejean, Bembidion, 432
strandi Liebke, Apenes, 445
striata Klug, Galerita, 442
striatopunctatus Putzeys, Selenophorus, 441
striax Darlington, Paratychys, 430
subaeneus Reiche, Selenophorus, 441
subangusta Darlington, Platynus, 435
subcordens Darlington, Platynus, 435
subdepressa Darlington, Stenocrepis, 438
sublaevis Putzeys, Dyschirius, 426
subovalis Darlington, Platynus, 435
subquadratus Putzeys, Selenophorus, 441
subterraneus alternans Chaudoir, Searites, 426

Quaest. Ent., 1984, 20 (4)
subterraneus Bonelli, Scarites, 426
subterraneus Fabricius, Scarites, 426
subterraneus patruelis LeConte, Scarites, 426
subtilis Bates, Anthonoderus, 443
sulcata Chevrolat, Stenocrepis, 438
sulcatus (Fabricius), Rhysodes, 376
sulcicollis Jacquelin du Val, Apenes, 445
suturalis Chaudoir, Colliuris, 445
suturalis Fabricius, Cicindela, 424
suturalis hebraea Klug, Cicindela, 425
taitenis Boheman, Cicindela, 424
tericola Darlington, Lebia, 447
testaceolimbata Motschulsky, Perigona, 443
tetragona caymanensis Darlington, Colliuris, 445
tetragona chaudoir, Colliuris, 445
thaxteri Darlington, Pseudaptinus, 441
thespis Casey, Bembidion, 432
thoracica Chevrolat, Galerita, 442
thoracicus Putzeys, Selenophorus, 441
tibialis Chevrolat, Stenocrepis, 438
tiburonicus Darlington, Dyschroomus, 435
tinctula Darlington, Calleida, 446
tipoto Darlington, Platynus, 435
tortuosa Dejean, Cicindela, 425
tortuosa LeConte, Cicindela, 425
translucens Darlington, Tachys, 430
trifasciata ascendens LeConte, Cicindela, 425
trifasciata Dejean, Cicindela, 425
trifasciata Fabricius, Cicindela, 425
tristis Reiche, Galerita, 442
tritax Darlington, Elaphropus, 429
trivittatus LeConte, Euproctinus, 446
tropicalis Motschulsky, Cicindela, 425
turquinensis Darlington, Platynus, 435
turquinnum Darlington, Bembidion, 432
umbripennis LeConte, Perigona, 443
unicolor Chevrolat, Coptodera, 446
unicolor Latreille & Dejean, Galerita, 442
unifasciatus Dejean, Somotrichus, 446
vagopunctata Darlington, Platynus, 435
variegata Dejean, Apenes, 445
variegata Dejean, Cicindela, 424
velatus Darlington, Bradycelius, 439
vetula Chevrolat, Galerita, 442
vigilans Casey, Agonum, 433
virens Chaudoir, Chlaenius, 438
virginica Olivier, Megacephala, 423
virginicum Casey, Calosoma, 423
virgula Thomson, Megacephala, 424
viride LeConte, Agonum, 433
viridicolle LaFerté-Sénectère, Bembidion, 432
viridicolli Dejean, Cicindela, 425
viridisflavescens Horn, Cicindela, 425
viridisflavescens originalis Horn,
Cicindela, 425
visitor Darlington, Platynus, 435
vitraci Fleutiaux & Sallé, Amblygnathus, 441
vittiger LeConte, Tachys, 430
vittula Darlington, Pentagonica, 444
vulnerata Putzeys, Aspidoglossa, 427
wolla Darlington, Platynus, 435
xenopodium Bell, Clinidium, 428
yunax Darlington, Elaphropus, 429