This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

CONTENTS

Editorial - The trumpet shall sound 1
Awram - Effects of crowding on wing morphogenesis in Myzus persicae Sulz.(Aphididae; Hemiptera) 3
Craig - The clarification of a discrepancy in descriptions of maxillary musculature in larval Simuliidae 31
Editorial - Man and whose world? 33
McDonald - The life history of Cosmopepla bimaculata (Thomas) (Heteroptera : Pentatomidae) in Alberta 35
Klassen - Dispersal of mosquitoes 39
Sehgal - Descriptions of new species of flies of the family Agromyzidae from Alberta, Canada (Diptera) 57
Book review 89
Tawfik - Feeding mechanisms and the forces involved in some blood-sucking insects 92
Abdelnur - The biology of some black flies (Diptera : Simuliidae) of Alberta 113
Editorial - On the life and death of information 175
Krishnan - Lipid metabolism in Blattella germanica L.: composition during embryonic and post embryonic development 177
Matthews - A paleoenvironmental analysis of three late Pleistocene coleopterous assemblages from Fairbanks, Alaska 202
Tawfik - Effects of the size and frequency of blood meals on Cimex lectularius L 225

INDEX

Abdelnur, O.M., 113
Acheta mitrara, 179
Acridium peregrinum, 178
Acylophorus, 210
Adams, P.C.G., 48, 51
Aedes, 39
aegypti, 40, 50, 92
head, 95
mouthparts, 94
albopictus, 49
aldrichi, 44
albimanus, 92
cantator, 50
cataphylla, 42
communus, 49
dorsalis, 49
fitchii, 40
flavescens, 50
leucocelaenus, 49
nigromaculis, 50
punctor, 42
spencerii 50
sollicitans, 39
tarsalis, 42
taeniorhynchus 39,49
Aeshna, 117
Agonum quinquepunctatum, 210, 219
Agrion, 117
Agromyza albertensis (n.sp.), 57, 77
ambigua, 58
barberi, 59
isolata, 60
masculina (n.sp.), 57, 59, 78
niveipennis, 58
spiraeae, 60
Agromyzidae (from Alberta), 57
Alaska, 202
biota, 204
paleoenvironment, 202
physical environment, 204
Albrecht, G., 193, 197
Allais, J.P., 178, 197
Amara alpina, 2C13, 210
Anderson, G.B., 3, 29
Anderson, J.R., 117, 166
Annelida, 117

Anopheles albimanus, 48
aldrichi, 49
atroparvus, 48
cantator, 49
culcifacies, 40
flavirostris, 48
freeborni, 40
funestus, 48
gambiae, 42, 48
labranchiae, 48
maculipennis , 39, 48
melas, 45
minimus, 48
pharoensis 39,48
quadrimaculatus , 40, 92
saccharovi, 39
sollicitans, 48
sundaicus 39, 48
vagus, 48
Ansell, G.B., 196, 197
Aphididae, 3
aphids, alate, 3
apterous, 3
Aphodius, 211, 219
aquatic organisms, 117
Arnason, A.P., 113, 166
Arthropoda, 117
Athabasca River, 118
Athripsodes, 118
Awram, w.J., 3, 8, 29
Babcock, K.L., 177, 198
Bacot, A.W., 225, 256
Bailey, S.F., 40, 51
Ball, G.E., 75, 208, 223
Barlow, C.A., 249, 256
Barlow, J.S., 180, 198
Barnley, G.R., 159, 166
Barreda, E.A., 159, 166
Barreda, E.A., 159, 166
Basrur, V.R., 113, 166
Bartlett, G.R., 182, 198
Beckel, W.E., 227, 256
bed bugs, 92
beetles (ground), 89
behavior (mosquito), 40
Bell, W., 225, 256

Bembidion, 209
(Peryphus), 209
grapei, 209
(Plataphodes), 209 arcticum, 209
Bennet-Clark, H.C., 101, 109
Bennett, G.F., 148, 166
Bidlingmayer, W.L., 40, 51
Bieber, L.L., 196, 198
Bison priscus, 214
black flies, 113
Blackith, R.E., 178, 198
Blatchley, W.S., 35, 37
Blattella germanica, 177
vaga, 192
blood meals, 225
size effect, 227
Boell, E.J., 178, 198
Bonnemaison, L., 3, 29
Bonnet, D.D., 49, 52
Bowland, J.P., 197
Brachycentrus occidentalis, 117
Brachycera, 120
Brevicoryne brassicae, 3
Britton, M.E., 204, 223
Brown, A.W.A., 113, 167
Brown, W.J., 223
Buerger, G., 96, 109
Bugher, J.C., 50, 52
Burton, A.C., 108, 109
Burton, G.J., 50, 52
Busnell, R.G., 192, 198
Busvine, J.R., 92, 109
Buxton, P.A., 92, 109
Byrrhidae, 211
Byssodon, 121
Caenocara, 211
Camelops, 214
Cameron, A.E., 133, 167
Campbell, F.N., 192, 200
Canada, 33, fossils, 202
carabid, 202
Carabus chamissonis , 203
truncaticollis , 209
Carausius (Dixippus) morosus, 178
Carlsson, G., 140, 167
Carrol, K.K., 181, 198
Causey, O.R., 44, 52
Ceratopogonidae, 120

Cerodontha dorsalis, 65
occidentalis(n. sp.), 57,64,82
Chew, R.M., 45, 53
Chironomidae, 118
Chisholm Creek, 120
Chojnacki, T., 196, 198
Cholodkowsky, N., 92, 109
Chordata, 118
Choristoneura fumiferans, 47
Christophers, S.R., 92, 109
Chrysolina, 211
Chrysomelidae, 211
Chubb, H.S., 51, 53
cibarial dilators, 103
pump, 101
Cimex lectularius, 92, 225
blood meals, 225
eggs, 238, 249
fecundity, 237, 245
head, 94
instars, 251
longevity, 241
moulting, 244
mouthparts, 93
nymphs, 227, 241
preoviposition period, 237, 245
weight, 245
Clarke, J.L., 40, 52
Clements, A.N., 39, 52, 92, 109
Clifford, H.F., 166
Cnephia., 123
emergens, 125,153
mutata, 113, 125, 151
saileri, 125
saskatchewana, 125
Coleoptera, 45, 118
fossils, 202
Colinvaux, P.A., 222, 223
Collins, D.L., 117, 170
Colymbetes, 210
Coope, G.R., 202, 223
Cook, E.F., 31
copulation (in Cosmopepla), 35
Corixidae, 118
corpus allatum, 241
Cosmopepla bimaculata (of Alberta), 35
life history, 35
Cragg, F.W., 225, 256
Craig, D.A., 31

Cross Lake Creek, 119
Crosskey, R.W., 166
crowding (effects of), 3
adults, 22
larvae, 24
parents, 24
temporary, 17
throughout reproductive period, 5
Crustacea, 117
Cryobius, 208
Cryptophagidae, 211
Cryptophagus, 21.1
Culex pipiens berbericus, 39
fatigans, 50
quinquefasciatus, 50
salinarius, 50
tarsalis, 39, 50
Curculionidae, 21 I
Curimopsis, 211, 222
Cutkomp, L.K., 180, 199
Cymindis, 210, 219
Dalmat, H.T., 145, 167
Dame, D.A., 40, 52
Daphnia, 117
Das, G.M., 31
Davies, D.M., 147, 167
Davies, L., 120, 168
Davis, G.C., 51, 52
Davis, N.T., 225, 256
DeCoursey, R.M., 36, 37
Decticus, 105
development (of Cosmopepla), 35
Defant, F., 45, 52
DeFoliart, G.R., 139, 171
DeMeillon, B., 42, 52, 225, 258
Deonier, C.C., 159, 169
Dethier, V.G., 129, 168
Diacheila polita, 209
Dianous, 210
Dicke, R.J., 117, 166
Dickerson, G., 92, 109
Dicrostonyx, 214
Dindymus versicolor, 97
Diploptera dytisccides, 192
Diptera, 47, 57, 113, 118
dispersal (of mosquitoes), 39
\& behavior, 40
\& topographical features, 44
\& wind, 41

Drosophila, 11
Dryptini, 89
Dubois, R., 177, 198
Dunbar, R.W., 113, 168
Durdan, A., 181, 200
Dyschirius, 209
nigricornis, 209
Dytiscidae, 118, 210
Eabry, H.S., 117, 170
Ectemnia, 121
Edwards, F.W., 120, 168
egg laying (in Cosmepepla), 35
eggs (of Cosmopepla), 36
(of Simuliidae), 133
Ejercito, A., 48, 52
Elaphrus, 219
pallipes, 209
riparius, 209
Elateridae, 211
Elmore, C.M., 48, 52
embryogenesis, 177, 192
Enderlein, G., 92, 109
England climates, 202
environment, postnatal, 7
prenatal, 7
Ephemerida, 117
Ephemeroptera, 117
Equus, 214
Esox lucius, 118
Esselbaugh, C.O., 36, 37
Eusimulium, 121
Eva Creek, 202, 205
Evans, A.M., 92, 110
Evans, W.G., 29, 36, 197
Expo 67, 33
Eyles, D.E., 39, 52
Fairbanks, Alaska, 202
frozen silts of, 204
Fairchild, G.B., 159, 168
Fallis, A.M., 148, 168
Fast, P.G., 177, 198
fatty acids, 187
Fawzi, M.H., 179, 198
fecundity, 6
feeding apparatus, 93
mechanisms, 92
rate \& forces, 98
Felt, E.P., 39, 52
Fernando, W., 92, 109

Fink, D.F., 192, 198
Finkel, A.J., 192, 198
Finney, D.J., 230, 256
Flatbush (Andy's) Creek, 119
flies (new species), 57
Flint, W.P., 92, 110
Florence, L., 92, 109
Folch, J.M., 180, 189
food (of Cosmopepla), 35
food canal, 96
fossils (Coleoptera), 202
ecological classification, 214
identification notes, 208
fossils (mammalian), 214
fossils (pollen), 214
Fredeen, F.J.H., 113, 168
French Creek, 119
Frey, D.G., 202, 224
Frick, K.E., 57, 75
Friend, W.G., 225, 256
Fulleborn, F., 92, 109
Galun, R., 50, 55
Gammarus, 117
Garnham, P.A., 159, 169
Garrett-Jones, C., 48, 52
Gartrell, 40, 46
Gastropoda, 117
Geyh, M.A., 207
Giglioli, M.E.C., 45, 52
Gilbert, L.I., 177, 198
Gilby, A.R., 177, 199
Gillies, M.T., 45, 52
Gilmour, D., 177, 199
Giral, F., 180, 199
Giral, J., 180, 199
Giral, M.L., 180, 199
Gjullin, C.M., 159, 169
Glick, P.A., 47, 52
Gnus, 121
Goiny, H.H., 159, 169
Golberg, L., 225, 258
Gooding, R.H., $92,110,197,240,256$
Gordon, R.M., 92, 109
Gottlieb, M.I., 179, 200
Goulden, C.H., 5, 29
Goulding, R.L., 159, 169
Greenbank, D.D., 47, 53
Greenslade, P.J.M., 202, 224
Grenier, P., 120, 169

Griffiths, G.C.D., 58, 75
Gunstream, S.E., 45, 53
Guthrie, R.D., 205, 224
Gymnopais, 121, 123
Gyorkos, H., 122, 174
habits (ofCosmopepla), 35
Habu, Akinobu, 89
Hadjijev, D., 197
Haeger, J.S., 40, 53
Hagenomyia, 121
Handlirsch, A., 120, 169
Happold, D.C.D., 113, 169
Harden, F.W.,4.0, 53
Harrison, L., 92, 110
Hase, A., 225, 257
Hasset, C.C., 45, 53
hatching (of Cosmopepla), 36
Haufe, W.O., 47, 53
Hays, R.O., 40, 54
Hilditch , T.P., 177, 199
Hill, D.L., 178, 199
Hinton, H.E., 31
Hirudinea, 117
Hitchen, C.S., 159, 169
Headlee, T.J., 53, 54
Hearle, E., 44, 53
Helicopsyche borealis, 117
Helobdella stagnalis, 117
Helodon, 121
Hemimetabola, 234
Hemiptera, 92, 118
Heptagenia, 117
Heteroptera, 35
Hocking,B.,2,29,34,36,39,40,42,53,75,108, $113,166,169$
Holmes, J., 166
Homoptera, 3
Hopkins, D.M., 212
Horsfall, 44, 53
Horhammer, L., 182, 201
Hoskins, C.H., 223
Howden, G.F., 178, 198
Hughes, Col., 166
Hughes, N., 166
Hyalophora cecropia, 192
hydrocarbon content, 186
Hydrophilidae, 118
Hydropsyche, 117
recurvata, 117
hypsotaxis, 44
Imms, A.D., 92, 110
incubation period (of Cosmopepla), 36
insect fats, 177
insect fossils, 202
insects (and man), 33
(as trumpeters), 1
blood-sucking, 92
intraspecific interaction, 9
Irish Creek, 119
Ivanova, L.V., 45, 53
Jamnback, H.A., 113, 172
Janisch, E., 225, 257
Jeffery, G.M., 92, 110
Jenkins, D.W., 45, 53
Jobbins-Pomeroy, A.W., 133, 177
Johans6on, A.S., 240, 257
Johnson, B., 3, 29
Johnson, C.G., 225, 257
Jones, R.M., 225; 257
Kalmus, H., 44, 53
Kassianoff, L., 22.5, 257
Kemper, H., 92, 110, 225, 257
Kennedy, J.S., 41, 53
key to Simuliidae, 122, 125
Kilby, B.A., 177, 199
Kindler, J.B., 159, 170
Kinsella, J.E., 177, 199
Kirkpatrick, T.W., 39, 53
Klassen, Waldemar, 39, 40
klinokinesis, 45
Knowlton, G.F., 113, 172
Krishnamurthi, 197
Krishnan, Y.S., 177
Kumm, H.W., 44, 52
laboratory rearing (roaches), 180
(Simuliids), 145
Lafon, M., 178, 199
Landau, R., 112, 170
Larson, D.J., 91
larviposition, 6
Lathrobium, 210
Lea, A.O., 159, 170
Lebia , 90
bifenestrata, 90
Leech, R., 166
Lees, A.D., 3, 29
Lees, M., 180, 198
Lemurimyza pallida (n.sp.), 57, 72, 87

LePrince, J.A.A., 48, 54
Leptocella, 118
Lepyrus gemellus, 211
Leucophaea maderae, 179
life history (of Cosmopepla), 35
Limnephilus canadensis, 117
Lindquist, A.W., 40, 54
Lindroth, C.H., 45, 54, 203, 224
lipid metabolism, 177
lipids (extraction), 181
(purification), 181
Liriomyza assimilis , 67
conspicua ($\mathrm{n} . \mathrm{sp}$.), 57, 66, 83
cordillerana(n.sp.), 57, 69, 72, 85
eupatori, 68
flaveola, 71
flavonigra, 67
graminicola, 68
montana (n.sp.), 57, 67, 84
pedestris ,68,70
richteri, 68
septentrionalis(n.sp.), 57, 70, 86
Livingston, D.A., 222, 224
Locke, M., 225, 257
Locusta migratoria , 178
pardalina , 179
Lofgren, C.S., 180, 199
Low, N., 48, 54
Lowry, O.H., 251, 257
LT50, 230, 235
Ludwig, D., 192, 199
Lumsden, W.H.R., 92, 109
Lupinus sericeus, 75
McCarthy, R.D., 181, 200
McCay, C.M., 179, 199
MacCreary, D., 45, 54
McCrae, A.W.R., 166
McDonald, F.J.D., 35
MacDonald, W.W., 47, 54
McDuffie, W.C., 113, 169
McGee assemblage, 220
MacGillivray, M.E., 3, 29
McMahon, J.P., 159, 169
Mackerras, I.M., 145, 170
Mackerras, M.J., 145, 170
Macrosiphum solanifolii, 3
Maddock, D.R., 159, 170
Madge, R., 89
Mammuthus, 214
man, 33
Mangold, G.K., 181, 199
Mason, W.R.M., 204, 224
Matsuda, R., 31
Matthee, J.J., 179, 199
Matthews, J.V., 202
maxillary musculature (Simuliidae), 31
Maynard, L.A., 179, 200
Melanagromyza, 62
Mellampy, R.M., 179, 200
Mellanby, K., 225, 257
Melanoplus atlanis, 180
differentialis, 178
sanguinipes, 180
Merriam's lifezones, 204
Metcalf, C.L., 92, 110, 141, 170
Mickel, C.E., 113, 171
Micralymma, 210, 221
Microtus gregalis, 214
Miles, P.W., 97, 110
Mitchell, P.H., 98, 110
Mollusca, 117
Moorebdella ferrida, 117
Morland, H.B., 40, 54
morphology (of Simuliidae), 31
Morychus, 211
mosquitoes (dispersal), 39
(passive transport), 47
movement, along lines, 45
toward illumination, 45
with strata of vegetation, 45
Moxostoma, 118
Muirhead-Thomson, R.C., 159, 170
Munson, S.C., 179, 200
myristic acid, 187
Myzus persicae, 3
Nebria nivalis, 203
Needham, J., 177, 200
nematodes, 162
Nemoura, 117
Nicholson, H.P., 113, 170
Nielsen, E.T., 40, 54
Niemierko, W., 177, 200
Nimmo, A., 166
Noble, L.W., 47, 52
Notiophilus, 209
borealis, 209
semistriatus, 209, 219
Nuttall, G.H.F., 92, 110

Odacanthini, 89
Odonata, 117
offspring (of aphids), 3
survival rate, 24
O'Kane, W.C., 133, 171
oleic acid, 187
Olophrum, 210
Omaliinae, 210
Omori, N., 225, 258
Oncopeltus, 97
Ophiomyia monticola (n.sp.), 57, 60,62,79
nasuta, 61
pulicarioides(n.sp.), 57, 61, 62, 80
punctohalterata, 62
Orgain, H., 40, 52
Osborn, H., 147, 171
Osborne, P.J., 202, 224
Ovibos moschatus, 214
Ovis nivicola, 214
Paederinae, 210
Paige, R.A., 204, 224
paleoenvironment (of Alaska), 202
Parasimulium, 121, 123
parasites (of Cosmopepla), 36
Pasternak, J., 113, 171
Patton, S., 181, 200
Patton, W.S., 92, 110
Pausch, R.D., 40, 54
Pawlowsky, E., 92, 110
Peacock, A.D., 92, 110
Pearincott, J.V., 196, 200
Pearson, R., 202, 224
Peck, O., 36
Pediculus humanus, 92
head of, 96
Pembina River, 118
Pentatomidae, 35
Periplaneta americana, 178
Peterson, B.V., 166
Peterson, D.G., 113, 171
Petrishcheva, P.A., 159, 171
Péwé, T.L., 204, 224
Phelps, R.J., 139, 171
Phillipson, J., 140, 171
phospholipids, 178, 187
Phytobia amelanchieris, 63
flavohumeralis,(n.sp.), 57, 62, 81
(Phytobia) setosa, 63
waltoni, 63

Phytomyza agromyzina, 75
angelicella , 74
aquilegiana, 74
lupini (n.sp.), 57, 73, 88
lupinivora(n.sp.), 57, 74, 88
Pickard, E., 45, 55
Pickering, L.R., I41, 169
Piechowska, M.J., 196, 198
Pimephales promelas, 118
Pisces, 118
Plecoptera, 117
Pleistocene assemblages, 202
Poisson, R., 35, 37
pollen analysis, 220
Polycentropus, 118
Popillia japonica, 192
population densities (effects), 5
on fecundity, 27
on longevity, 27
on offspring, 27
(on Simuliids), 138
postembryonic development
(of Cosmopepla), 36
Prevost, G., 113, 171
Prosimulium, 121, 123
decemarticulatum, 125
fontanum, 113
frohnei, 113
formosum, 113
fulvum, 113, 125
fuscum, 113
hirtipes, 113
mixtum, 113
onychodactylum, 113, 125
pleurale, 125
travisi, 113, 125, 151
protein content, 251
Provost, M.W., 39, 54
Psilozia, 121
Psorphora, 51
Pterostichus, 208
(Cryobius), 209
anriga, 209
brevicornis, 210, 221
caribou, 210
chipewyan, 209
gerstlensis, 209
kotzebuei, 209
mandibularoides, 210, 221

Pterostichus (Cryobius)
nivalis, 210, 221
ochoticus 209, 221
parasimilis, 209, 221
pinguedineus, 209, 221
similis, 209, 221
soperi, 209
tareumiut, 209, 221
ventricosus, 210, 221
Pterostichus (Sterocerus) haematopus,210,221
Pulmonata, 117
Puri, I.M., 31
Quarterman, K.D., 51, 54
Radzivilovskaya,A., 120, 172
Rageau, J., 120, 169
Rainey, R.C., 192, 100
Ramazzotto, L.J., 192, 199
Rangifertarandus, 214
Raphanus sativus, 4
Rhodnius prolixus , 101, 227
Rhopalosiphum prunifolia, 3
Ribbands, C.R., 44, 54
Richards, W.R., 113, 169
Rickard, E.R., 48, 54
Robinson, G.G., 92, 110
Roeder, K.D., 108, 110
Rosentiel, R.G., 40, 55
Ross, H.H., 192, 200
Ross, R., 40, 55
Roth, L.M., 192, 200
Rothfels, K.H., 113, 172
Rothstein, F., 192, 200
Roy, D.N., 249, 258
Rubtzov, I.A., 120, 172
Rudolfs, W., 192, 200
Russell, P.F., 40, 55
Rutschky, C.W., 177, 198
Sacharov, N.L., 179, 200
Saf'yanova, V.M., 159, 171
Sanderson, M, 223
Sane, P.V., 197
Santiago, D., 48, 55
Sato, S., 44, 55
Sautet, J., 40, 55
Scarabaeidae, 211
Schaefer, C.W., 225, 256
Schiemenz, H., 92, 110
Schneidermann, H.A., 192, 198
Schoof, H.F., 40, 51

Schweet, R.S., 179, 200
Scoggin, J.K., 177, 200
Scott, J., 109
Scydemaenidae, 211
Sehgal, Vinod K., 57
sense organs, 96
(of Cimex), 97
Sharplin, J., 166
Shemanchuk, J.A., 50, 55, 113, 169
Shewell, G.E., 120,172
Shotton, F.E., 202, 224
Siakotos, A.N., 179, 200
Sikora, H., 92, 110
Silpha sagax , 211
trituberculatus, 211
Silphidae, 211
Simpolcaria, 211
Simuliidae, 113
adults, 148
control, 159
larvae, 31, 134
larval migration, 142
life history, 151
maxillary musculature, 31
pupae, 147
Simulium, 123
arcticum, 125, 153
aureum, 113, 125, 154
bivittatum, 125
corbis, 125
decorum, 124, 155
griseum, 125
hunteri, 124
latipes, 113, 125, 155
luggeri, 124, 156
malyshevi, 124
meridionale, 124
pictipes, 125
piperi, 125
pugetense, 125
rugglesi, 125
transiens, 125
tuberosum, 113, 124, 156
venustum, 113, 124, 157
verecundum, 124, 157
vittatum, 113, 125, 158
Slifer, E.H., 178, 200
Sloane-Stanley, G.H., 180, 198
Smart, J., 120, 172

Smith, G.F., 47, 55
Smith, C.N., 109
Smyth, T., 178, 199
Snodgrass, R.E., 92, 110
Snow, W.E., 45, 55
Sommerman, K.M., 113, 1.72
Rees, D.M., 44, 54
Reeves, W.C., 50, 54
Regan, F.R., 159, 170
Reger, R., 223
Rempel, J.G., 49, 54
respiration rate, 253
Spector, W.S.,251, 258
Spencer, K.A., 57
Sphenarium purpurascens, 180
Stachys palustris, 35
Stage, H.H., 44, 55
Stains, G.S., 113, 172
Staphylinidae, 210
starving (effects), 3, 27
Stearns, L.A., 49, 54
Stegoconops spegassinii, 51
Stegopterna, 121
Steiner, G., 41, 55
Stenus, 210
sterol content, 186
Stojanovich, C.J., 92, 111
Stone, A., 113, 173
Strickland, E.H., 113, 173
stroking, 11
(effects), adults, 12 larvae, 16
Syme, P.D., 147, 167
Swellengrebel, N.H., 48, 55
Tachinus, 210
Tachyporinae, 210
Taeniopoda auricornis, 180
Tauber, O.E., 177, 200
Tawfik, M.S., 92, 225
Taylor, J., 50, 52
taxonomic relationships (Coleoptera), 219
Tettigonia, 105
Theromyzon occidentalis, 117
Tichimirov, A., 192, 201
Timon-David, J., 177, 201
Titschack, E., 225, 258
transport, passive, 47
Travis, B.V., 159, 173
Trichocellus porsildi, 210

Trichoptera, 117
Twinn, C.R., 113, 169
Twinnia, 121, $1: 23$
Umbreit, W.W., 251, 258
Urbino, C.M., 48, 52
Usinger, R.L., 109, 225, 258
VanBreeman, M.L., 48, 55
Vargas, L., 159, 173
Veraphis, 211
Vlasov, N.A., 159, 172
virginopara, apterous, 4
vitellogenesis, 240
Vogel, R., 92, 111
VonGernet, G., 96, 109
Wada, Y., 40, 55
Wadley, F.M., 3, 29
Wagner, H., 182, 201
Wanson, M.L., 159, 173
Weber, H., 92, 111
Wellington, W.G., 47, 55
Wenyon, C.M., 48, 55
West, A.S., 113, 171
Westwood, J.O., 120, 173
Wiegers, J.E., 223
Wigglesworth, V.B., 105, 111, 227, 258
Williams, C.B., 148, 173
Wilton, D.P., 159, 173
wing morphogenesis, 3
Wisconsin age, 202
Wolfe, A.S., 113, 171
Wolff, P., 182, 201
Wolfinsohn, M., 50, 55
Wood, D.M., 12.2, 167
Worcester, D.J., 49, 52
Wright, S., 98, 111
Wu, Y.F., 120, 174
Yakuba, V.N., 142, 174
Zahar, A.R., 120, 174
Zoller, H.S., 170, 200

