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4.1 INTRODUCTION 
 
Like any remote sensing project, a set of objectives is first identified in human settlement remote sensing.  
For instance, remote sensing of human settlements may be for the purpose of land use mapping, urban 
change detection, assessment of environmental pollution or health of urban forests, urban heat island 
studies, or population estimation.  Once a particular project objective is identified, the investigator usually 
proceeds through three consecutive steps: (1) determination of imagery and data needs and acquisition from 
available sources; (2) determination of data and image processing to accomplish the objective; and (3) 
selection and/or development of a strategy for information extraction from the remotely sensed data.  For 
example, in order to detect and map urban change, one needs to have multi-temporal data.  The spatial and 
spectral resolution of the imagery determine the level of spatial and environmental detail that are 
detectable.  The season of the year is an important consideration given the variation in vegetation, solar 
angle variation and other environmental features; consequently, images taken near anniversary dates are 
desirable for change detection.  In order to map patterns of urban heat island, thermal images need to be 
collected.  Different data types have different requirements for image processing.  Finally, there are various 
information extraction approaches that can be followed to derive the meaningful information to meet 
specified project objectives.  Figure ----- in Chapter ----- is a useful guide for identifying steps toward a 
particular objective and project.   In this chapter, some of the commonly used image processing procedures 
will be reviewed.  Strategies of information extraction will be introduced in Chapter 5.  
 
4.1.1 Data Availability 
 
Since the launch of the Earth Resource Technology Satellite-1 (ERTS-1, later became Landsat –1) in 1972, 
satellite imaging for earth observation has significantly changed our ways of monitoring and mapping 
human settlements.  In particular, the constant improvement of the spatial resolution by various sensors 
from the original multispectral scanner (MSS) with 80 m resolution to the order of meter or sub meter 
levels makes detailed observation gradually possible to scientists, professionals, policy makers alike.  
These have been evidenced by the advent of the 30 m resolution Landsat Thematic Mapper (TM) in 1982, 
10-20 m resolution SPOT High Resolution Visible (HRV) in 1986, the 5.8 m resolution India Remote 
Sensing Satellites in early 1990s, 1-4 m resolution Space Imaging’s IKONOS in 1999 and the 0.67 – 2.6 m 
resolution Digital Globe’s Quickbird in 2001.  Since the launch of Earth-Observing –1 (EO-1) in 2000, 
hyperspectral images with a spectral resolution of approximately 10 nm and a spatial resolution of 30 m are 
also available from space.  Satellite imaging is approaching the spatial quality of small-scale aerial 
photographs together with more spectral bands and better radiometric capabilities.  Figure 4-1 shows 
example images acquired from some recently developed sensors with different resolution and spectral 
sampling.  Additionally, the spectral imaging capabilities have been advancing both in spectral coverage 
and spectral resolution.  Satellite images are not only widely available in the visible, near infrared, and 
shortwave infrared (1-2.5 µm) regions, but also in the thermal and microwave regions.  These are 
exemplified by the increased thermal imaging capabilities with such sensors as Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) and Enhanced TM+ on board Terra and Landsat 7, 
respectively, and the ERS, JERS, and Radarsat radar imaging from space.  All these developments have 
enormously increased the volume of data available to human settlement remote sensing.  The diversity of 
data increases the demand for innovative image processing and information extraction. 
 
4.1.2 Primary Components in Image Processing 
 
Image processing consists of procedures that produce new images from old ones.  It involves all operations 
applied to any form of images, e.g., raw images acquired freshly from remote sensors, images contaminated 
by noise such as clouds and shadow, or images distorted by sensor malfunctioning, sensor platform 
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instability, etc.  The general purpose of image processing is to prepare image data that can be better utilized 
in subsequent image interpretation or information extraction. 
 
Image processing procedures can be broken into three broad categories (Figure 4-2): image restoration, 
image enhancement, and image compression.  Image restoration can be further divided into radiometric 
correction and geometric correction.  These are presented in sections 4.2 and 4.3 respectively.  Image 
enhancement is accomplished through global, local, and/or multispectral operations, and image fusion.  A 
variety of processes can be employed such as histogram adjustment, filtering techniques, image arithmetic 
operations, and image transformations.  Some of the techniques will be discussed in section 4.4.  
Employing various coding and transformation techniques to reduce data volume while preserving all or a 
major part of the image information, image compression serves the purpose for data storage and 
transmission.  Some techniques can be applied in sequences for image enhancement and information 
extraction purposes.  For example, Fourier transform can be applied to a single image and the transformed 
image in frequency domain can then be applied to image filtering and texture analysis. Wavelet transform 
has been widely used in image compression, texture analysis, and image fusion.  In this chapter we will 
concentrate on some techniques of image restoration and image enhancement (section 4.4) that are 
important for remote sensing of human settlements.   
 
 
 

               
      (a)                        (b)                        (c)                     (d) 
 
Figure 4-1.  Examples of images acquired over Venice, Italy, by sensors on board of some recent 
satellites.  a. Landsat ETM+ image (30 m, 6 spectral bands),  b. EO-1 Hyperion image (30 m, 224 
bands), c. Terra ASTER image (15m, 3 visible and NIR bands, 30 m, 6 shortwave infrared bands) 
and d.  IKONOS image (4 m, 4 bands). (Image courtesy of Michael Abrams) [W] 
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RADIOMETRIC PROCESSING 

 radiometry is affected by factors such as system noise, inconsistent detector responses, sensor 
nction, atmospheric interference, and differences in illumination and viewing geometry caused both 
ferences in surface morphology (or topography) and time of image acquisition.  Correspondingly, 
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radiometric processing, as part of the image processing task (Figure 4-2), aims at removing or reducing 
these effects.  It includes radiometric calibration for removal of some of the system noise and rectification 
of detector responses, remediation of sensor malfunction, atmospheric correction for reduction of the 
atmospheric interference, illumination angle, and viewing angle correction for normalization (or 
standardization) of imaging conditions. 

Sensor system noise, detector responses, and spectral calibration are dealt with by sensor manufacturers or 
data suppliers.  System noise is caused by dark currents of instrument when no external radiance is received 
by the sensor. Detector inconsistency can be calibrated by using standard light sources with known 
radiometric intensities. Known specific absorption features are used to calibrate any spectral wavelength 
displacement to achieve the goal of spectral calibration.   Once these are processed, the radiance that 
reaches a sensor is expressed by 

  Ls = K · DN + Lmin (Wm-2 Sr-1) (4-1) 

  K = 
Lmax - Lmin

DNrange
  (4-2) 

Normally Lmax, Lmin and DNrange are known from the sensor manufacturer or operator.  However, Ls is 
composed of contributions from the target, background and the atmosphere (Figure 4-3).  In Figure 4-3, i is 
the solar incidence angle, e is the viewing angle. 
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Figure 4-3. Light interaction with the atmosphere and the target (T) and background (B).  Part of 
the scattered radiation is received by the sensor.  [B/W] 

 

The radiance recorded by the sensor contains two parts of the energy: one part carrying surface target signal 
traveling through the whole course from the illumination source, usually the sun, to earth surface and from 
the surface to the sensor, and the other part from the illumination source to the atmosphere and then to the 
sensor.  The second part does not contain information about earth surface.  During the process of energy 
transmission, the atmosphere plays two roles to attenuate the transmission of the energy: absorbing energy, 
a role of blocking, and scattering, a role of dispersing lights into different directions.  The absorption role 
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varies with the change of atmospheric constituents and the scattering role is dependent of the size of 
particles in the atmosphere.  Different constituents have different absorption features (strong light 
absorption at certain wavelengths).  The abundance of certain constituents determines the strength of the 
absorption (low transmission valleys in Figure 4-4).  It is well known that there is a relatively stable 
proportion of nitrogen, and oxygen in the atmosphere and their absorptions of light in the wavelengths of 
our concern are negligible.  So does the CO2 in the atmosphere.  The variable components of the 
atmosphere are water vapor, ozone and aerosols.  Among these, the first plays a significant role in light 
absorption in certain wavelengths and the aerosols severely affect light transmission through scattering.  
Therefore, in order to estimate the atmospheric attenuation of light, we need a good knowledge of the 
amount of water vapor, ozone, and aerosols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4.  Spectral transformation of the atmosphere (after Colwell, 1983)  [B/W] 

Different ratios, r, between atmospheric particle size and wavelength of light have different scattering 
effects on light transmission.  When r << 1, the particles have a strong wavelength-selective scattering 
effect, called Rayleigh scattering, i.e., the scattered amount of light is proportional to 1/λ4.  It passes 
approximately 95% of the light in the forward directions.  For wavelengths in the visible and near infrared, 
this is the case when the atmosphere is primarily composed of small particles at the molecular level, i.e., 
when the sky is crystal clear and the humidity is low.  When r is close to one, the particles in the 
atmosphere has Mie scattering effect, i.e., the scattered amount of light is proportional to 1/ λ 1~2.  It split 
the energy into 50% and 50% in the forward and backward directions.  When r >> 1, the particles in the 
atmosphere have non-selective backward scattering.  

In summary, the atmosphere affects the transmission of energy in three ways. Firstly, it modifies the 
spectral and spatial distribution of the radiation incident on the surface.  Secondly, radiance being reflected 
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by ground target is attenuated.  Thirdly, radiance scattered by the atmosphere called path radiance, Lp, is 
added to the transmitted radiance, LT, toward the sensor.  Assuming that Ls is the radiance received by a 
sensor, it can be divided into LT and Lp 

  Ls = LT + Lp (4-3) 

Clearly, LT contains information about the target. 

For a given spectral interval [λ1, λ2] the solar irradiance reaching the earth's surface, EG, is 

  EG = 
2

1

( cos )s i dE T i E d
λ

λ
λ+∫  (4-4) 

where Es is the solar irradiance outside the atmosphere, Ti the atmospheric transmittance along the incident 
direction, and i the incident angle, and Ed the diffuse sky irradiance. 

Spectral properties of different surfaces are very complicated and can range from specular to diffusive.  
Conventionally, most surfaces are approximately considered as diffuse reflectors at high solar elevations, 
i.e. when i is small.  If the surface is assumed to be a perfect diffuse reflector, i.e. the Lambertian case, 
which is rarely true in reality, then the surface reflectivity is a constant, ρ .  The ratio of the radiation 

reflected in the viewing direction to the total radiation into the whole upper hemisphere is given by 
1
π  .  

Based on the Lambertian assumption, 

  LT = Ls - Lp  =  
2

1

1 ( cos )e s i dT E T i E d
λ

λ
ρ λ

π
+∫  (4-5) 

where ρ is the target reflectance, Te is the transmittance along the viewing direction.  Therefore, in order 
to quantitatively analyze remotely sensed data, i.e. to find ρ , atmospheric transmittance T and path 
radiance Lp have to be known.  One way to approximately estimate Lp is to use the radiance difference 
between shadow areas and sun-lit areas of the same type of surface.  Another method is to use dark targets.   

In reality, target spectral properties are a function of not only the physical properties of the surface cover 
but also the incident and viewing angles.  This function is called bi-directional reflectance distribution 
function (BRDF).  Because BRDF is more complicated than a Lambertian case, it has rarely been analyzed 
for most human settlement applications of remotely sensed data.  Interested readers are referred to Hapke 
(1993) for detailed treatment of this subject. 

Radiometric processing can be divided into absolute calibration and relative calibration.  Absolute 
calibration includes radiometric calibration and correction.  They convert image gray-level values (digital 
numbers) to absolute radiances.  The goal is to reduce radiometric error, i.e., reduce the difference between 
radiance measurements by the sensor for targets of interests and the actual radiances for the same targets.  
Relative calibration includes procedures that can be used to balance the responses of one detector against 
others.  Sometimes we can balance (standardize, or normalize) one image against another if some common 
parts of the images can be considered not changing over time.  Gray-level value conversion to radiance 
may not be necessary.  Obviously, radiometric processing is helpful to change detection because sources of 
radiometric distortion are reduced.   The more accurate we can achieve for radiometric processing, the 
more universal can other analysis methods be used for information extraction purposes.   

The requirement for accuracy in radiometric correction for remote sensing of settlements is not as rigorous 
as some other applications when daily images are required over a period of time longer than a year such as 
the analyses of annual trend of vegetation with NOAA AVHRR or Terra MODIS data.  Therefore, in 
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applications of remote sensing for human settlements a thorough radiometric processing can hardly be 
found.  Instead, simple and relative methods are often used.  These methods include dark target correction, 
image radiometric calibration based on measurement from pseudo-invariant targets, solar angle and view 
angle normalization (when a DEM [digital elevation model] is used this reduces topographic effects as 
well).  In the rest of this section we introduce some of the often-used radiometric processing methods. 

4.2.1  Detector Response Calibration 

System noise refers to the white noise and a systematic noise in the electric-optical system of a sensor.  
While the white noise cannot be removed and it determines the signal to noise ratio (S/N, affecting the 
radiometric resolution) of a sensor system, the systematic noise caused by environmental conditions at the 
time of operation can be removed by subtracting the dark current of a sensor system measured with no 
external radiation. The Landsat TM sensor has 16 detectors for each of the visible, near infrared, and 
middle infrared bands, while the SPOT HRV sensor has 3000 to 6000 detectors in a band.  The problem is 
that no detector functions the same way as another.  If the problem becomes serious, the image acquired by 
such sensors will have banding or striping effects (Figure 4-5a).  This can be corrected through a 
radiometric calibration procedure.  By exposing different levels of known radiation to all detectors, their 
different responses are recorded.  A regression between detector response, DNr, and the known amount of 
radiation, DNc, allows us to derive a response function (usually a linear one) for each detector.  The linear 
regression takes the following form 

 DNc = a · DNr + b (4-6) 

where coefficients a and b are obtained using a least squares method. 

A radiometric calibration can then be made by applying the response function of each detector to its 
measured radiances to generate a better quality image (Figure 4-5b). Once, each detector is calibrated, the 
calibrated image data (digital numbers) can be converted into radiance or spectral reflectance.  For the 
Landsat MSS and TM, these data can be found in Markham and Baker (1986).  For other type of sensors, 
users can obtain calibration information from the sensor manufacturer or conduct their own calibration 
using standard light sources.  Usually this will remove the inconsistencies of detector response.  If after 
radiometric calibration, the image still has striping effects, a relative balancing of the detectors through 
histogram matching (Horn and Woodham, 1979; see section 4.4.1) or balancing the mean and standard 
deviation (Richard and Jia, 1999) can be used. 

 

   

Figure 4-5.  a.  A raw Advanced Land Imager (ALI, 30 m resolution) Band 2 (0.525-0.605 µm) 
image (Level 0 product) of Moffett Field, California, acquired on board EO-1 showing the striping 
caused by detector response inconsistency; b. The radiometrically calibrated ALI Band 2 image 
(Level 1 product). (Image courtesy: GSFC, NASA)   [B/W] 
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4.2.2 Gray-level Value to Radiance or Reflectance Transformation – Simple Atmospheric 
Correction 

This is usually done after detector response correction in order to reduce atmospheric effects.  One of the 
simplest techniques is a linear transformation between image gray-level value and radiance or reflectance.  
Therefore, it requires the measurements of spectral radiances or reflectances in the field to be imaged at the 
same time of sensor overpass.  However, it is usually impossible to do simultaneous spectral measurements 
at the time of imaging because a large number of parallel operations in the field may be required.  A 
pseudo-invariant target approach is often adopted.  Spectral reflectance of targets such as parking lot, roof 
tops, pavements, water bodies, gravel pits, sandy lands, may be considered not changing over time.  
Therefore, their spectral reflectance can be measured before or after an image is taken.  Even so, similar 
type of weather condition and time of the day should be chosen.  To assure a good linear relationship 
between image gray-level values and spectral reflectances to be derived, targets with larger ranges of 
spectral reflectance should be chosen.  Spectral data collected in the field with a field spectrometer should 
be processed to have similar spectral wavelength ranges to those of the sensor (this is usually done through 
averaging and merging of spectral bands of the spectrometer).  A linear regression can be made in the same 
manner as in detector response calibration.  When a linear regression function is established, it can be 
applied to convert gray-level values into spectral reflectances.  

This empirical method has been widely used in remote sensing (Forster, 1980; 1985, Gong et al., 1994). 
This method can be considered as a simple method for atmospheric correction in which the offset and gain 
of a linear equation account for the path irradiance and multiplicative factors of the atmosphere, 
respectively. 

4.2.3 Radiometric Normalization 

A problem associated with the use of multi-temporal remote sensing data for change detection is that data 
are usually acquired under different sun angle, atmospheric, and soil moisture conditions. Such data can be 
adjusted through a process called radiometric normalization, so that the effects of those undesirable 
conditions can be minimized or eliminated (Hall et al., 1991). This process normalizes an image according 
to another reference image.  The linear equation can be built based on a scatterplot between the image to be 
normalized and the reference image (Elvidge and Ding, 1995).  Although the same linear procedure is used 
as in the previous sections, radiometric normalization is a relative calibration as it does not convert image 
gray-level values to their actual reflectances.  The reference image should be chosen to contain the smallest 
amount of external effects.  For example, it should be acquired when the solar zenith is high and the 
atmospheric condition is good to reduce shadow and minimize atmospheric interference. 

For any regression, an R2 value can be used to evaluate the adequacy of the regression equation.  In general, 
an R2 of 0.85 or greater is considered good for radiometric normalization, but a higher value is preferable 
for the previous methods. 

4.2.4  Atmospheric Path Radiance Determination 

Under clear sky condition when Rayleigh atmosphere dominates, a dark target may be used to determine 
the atmospheric path irradiance.  Since Rayleigh scattering affects strongly in short wavelength particularly 
visible and we know that clear-deep water has a very low spectral reflectance in the visible and near and 
middle infrared wavelength region.  We can use such water bodies in a dark target approach to estimate 
atmospheric path radiance.  If a water body greater than 10-20 pixels in diameter can be found in an image, 
we can use the radiance of water derived from the image as Lw and the radiance of water, L, measured on 
site or assumed to estimate Lp. 

  Lw  =  K · DN (water dody) + Lmin (4-7) 
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  Lp  =  Lw – L (4-8) 

Lp can then be subtracted from other radiances in an image for the visible channels.  For the infrared 
channels, water completely absorbs radiance incident to it.  What is recorded in an image of water bodies 
can be considered as the upward path radiance of Lp. 
 
Sometimes, the effects of thin clouds on the visible and shorter than 1.0 µm images can be largely removed 
using information available in the longer wavelength if such information is available.  Gao et al (1998) 
used an AVIRIS image over Bowie, Maryland to reduce cloud effects.  On a 1.38 µm water vapor absortion 
image showing only cirrus clouds, the correction of cirrus scattering effects is done in a simple way.  Using 
a visible band image at 0.66 µm and the 1.38 µm image (Figure 4-6),  they built the following linear model 
to restore the radiance in 0.66 um: 

 
R_cir_corr (0.66 µm) = R(0.66 µm) - c * R(1.38 µm)  (4-9) 
 
where R_cir_corr (0.66 µm), R(0.66 µm)  and R(1.38 µm) are respectively the corrected image, and the 
raw images in the corresponding bands; c is derived from the scatter plot of R(1.38 µm) vs R(0.66 µm).  
Because of strong water vapor absorption below cirrus clouds, the sensor at the 1.38-µm channel only 
received solar radiation scattered by cirrus clouds. The solar radiation on the downward path transmitted 
through cirrus layer is absorbed by water vapor below cirrus.  The cirrus path radiance in the visible is 
proportional to the 1.38 µm radiance. 
 
On the top of Figure 4-6, a color composite of the AVIRIS image acquired on July 7, 1996 is shown (red: 
0.66 µm; green: 0.55 µm; and blue: 0.47 µm).  From this image, the residential areas can be seen  
contaminated by puffy cirrus clouds.  In the middle is the 1.38-µm channel AVIRIS image. This channel 
detected only cirrus cloud in the upper part of the troposphere. The solar radiation transmitted through 
cirrus clouds on the downward path was absorbed by water vapor below cirrus clouds. As a result, this 
channel did not see surface background. The bottom of Figure 4-6 shows the cirrus-corrected image using 
the method described above. 
 
Using the aerosol optical path information derived from TM band 7 (2.10 – 2.35 µm) based on a “dark 
object” method, Liang et al (1997) developed an operation atmospheric correction method to correct for the 
atmospheric effect on Landsat TM imagery over the land.  Here the dark objects are dense vegetation or 
even dark soil in TM band 7.  The reflectances of dark objects are used to estimate the aerosol optical 
depth.  Other atmospheric parameters are estimated following assumptions of atmospheric conditions. 
Atmospheric correction can then be applied to all the bands. 
 

4.2.5. Application of Atmospheric Radiative Transfer Models 

 
Atmospheric correction procedures introduced earlier are simple and straightforward.  They are most 
widely used in the remote sensing of human settlement.  However, they can only be used to reduce the first 
order atmospheric attenuation.  As illustrated in Figure 4-3, the atmospheric interference with light is 
complicated and contains multiple scattering that cannot be fully addressed by those approaches mentioned 
above.  The alternative is to model the radiative transfer process in the atmosphere.  This can be done 
through the use of some well-established radiative transfer models such as MODTRAN and 5S.  Both 
models require as their inputs parameters about atmospheric constituents and abundances.  Although it is 
desirable to measure 
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Figure 4-6.  Cirrus cloud effect reduction using water absorption images.  (Courtesy of Rong 
Rong Li and Bo-Cai Gao)  [B/W] 
 

the atmospheric parameters at the time of image acquisition, this is usually impossible to do as atmospheric 
condition changes from time to time and from location to location.  Therefore, previous application of those 
models approximated atmospheric conditions through the use of one or two parameters such as the 
atmospheric visibility and humidity obtainable from weather stations in the area of interest. 

A number of radiative transfer codes are available.  These include MODTRAN, 5S (Simulation of the 
Satellite Signal in the Solar Spectrum 5S) and 6S (Second Simulation - aircraft, altitude of target).  There 
are FORTRAN codes available for these algorithms (Air Force Research Laboratory, 2001).  The 5S and 
6S are proposed by Tanre and his colleagues (e.g. Tanre et al., 1990).  Other atmospheric correction 
procedures include ATREM, FLASH, HATCH and ACORN (EO-1 Special Issue).  Anyone of these can be 
used with various levels of complication. They can be used to carry out sophisticated atmospheric 
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corrections of remotely sensed data.  The key to the successful application of these models is the good 
knowledge of the atmospheric conditions at the time of image acquisition.  As the increase of the remote 
sensing capabilities, sensors such as MODIS and those on-board EO-1 are designed to include spectral 
bands allowing simultaneous extraction of parameters about the surface and atmospheric conditions.  It is 
hopeful that in the future, parameters interpreted from those atmospheric bands can be used in the 
atmospheric correction of those bands for surface information extraction.  Atmospheric correction must be 
done with great care.  Since there are many factors to be accounted for, if the estimations are not properly 
made, the atmospheric correction might introduce new errors to the corrected image. 

4.2.6 Summary 

Radiometric calibration usually converts DN in a raw image into radiance or reflectance.  This process 
includes sensor calibration, atmospheric correction, and topographic correction (see Figure 4-2; Gong, 
http://camfer.cnr.berkeley.edu/~gong/textbook). Among these, sensor calibration is usually done by data 
providers while the remaining two types of correction are done by users.  For remote sensing of urban 
settlements, topographic correction is not very applicable due to the severe modifications of smoothly 
varying terrain by human settlements.  Correction for atmospheric effects can either be done using 
information obtained from on flight measurements and field measurements of atmospheric conditions or 
using information available in the remotely sensed image as for the cases of cirrus cloud effect correction 
using the 1.38 water absorption band (Gao et al, 1998) and the aerosol optical path determination (Liang et 
al, 1997). On the other hand, it is not always necessary to carry out radiometric calibration.  For instance, it 
is unnecessary to apply atmospheric correction to single image classification as long as the training data are 
specified for each single-date image.  For Landsat TM data where the primary atmospheric distortion is due 
to scattering which is additive to the original signal, atmospheric correction is essentially translating each 
image band without changing the internal data structure.  Such operations are not necessary for multidate 
image classification, post-classification comparison, change detection based on image differencing, and 
linear transformations of multiple images such as KT transform and PCA (Song et al, 2001).   It is 
necessary to perform atmospheric correction if multiband ratioing (such as the normalized difference 
vegetation index NDVI) is used in change detection.  Absolute correction such as the use of radiative 
transfer models requires knowledge about atmospheric optical path and abundance of various atmospheric 
particles.  Relative calibration does not require any extra information and it balances radiances from one 
image against those of another.   
 
 
4.3 GEOMETRIC PROCESSING 
 
Geometric processing is part of image processing (Figure 4-2).  There are three major forms of imaging 
geometry. The first one is central perspective. It is the simplest because the entire image frame is defined 
by the same set of geometric parameters.  Images acquired with cameras take this form.  The second 
imaging geometry is multi-central perspective where each pixel makes its own central perspective.  Images 
obtained with Landsat TM, AVIRIS, and other rotating mirror scanners take this form. This is the most 
complicated because each pixel has to be corrected separately if there exists geometrical distortion.  The 
third one is also multi-central perspective but each line of an image has a central perspective.  Sensors such 
as the SPOT HRV, IRS, and EO-1 Hyperion acquire images in this form.   
 
There are a number of factors that could introduce errors or distortions to image geometry.  These include 
sensor lens distortion, platform instability (roll, yaw, and pitch), platform velocity, surface relief, earth 
rotation, and earth surface curvature (when a large area is imaged).  Atmospheric turbulence affects the 
stability of airborne platform. Image view angle differences may cause different image distortion.  
Procedures developed to reduce the distortions caused by those factors is geometric correction or 
rectification.   
 
Geometric processing has been traditionally dealt with in photogrammetry where techniques have been 
developed to address problems related to images acquired with cameras.  Each photograph taken from a 
camera has a single perspective projection.  Photogrammetric techniques developed to process central 
perspective images include geometric rectification, stereomodel building, 3D measurements, orthoimaging, 
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and multiple image mosaicing (Slama, 1980).  The other two types of imaging geometry acquired by 
scanner type of sensors are rarely used in stereo modeling and 3D measurements.  They are primarily used 
to produce plane maps.  Geometric processing for the scanner type of sensors involves image geometric 
rectification, image to image registration, georeferencing and image mosaicing.  Image to image 
registration is a procedure that transforms the coordinate system of one image to that of another so that 
multiple images taken at different times or even with different sensors can be compared spatially.  
Technically, image to image registration is similar to georeferencing.  Georeferencing is a procedure that 
transforms the coordinate system of an image into a coordinate system of a specific map projection.  While 
there are many different map projections designed for various mapping purposes, the universal transverse 
Mercator (UTM) projection (Snyder, 1982) is the dominant projection used for remote sensing of human 
settlements.  With a known map projection, the geographic coordinates (i.e., longitude and latitude (λ, ϕ)) 
for any pixel in an image can be calculated in real time.  Therefore, georeferencing makes it possible to 
analyze images acquired at different times, by different sensors and with different resolutions.  
Furthermore, georeferenced images can be analyzed with spatial data from other sources such as map data 
and field survey data.  Image georeferencing is similar to geocoding of thematic data in a GIS.  Image 
mosaicking is a procedure for joining multiple frames of images that have been georeferenced in the same 
coordinate system. 
 
Presently, geometric processing at different levels can be done by image providers with extra expenses.  In 
this section, we first introduce the procedures and principles for georeferencing of images acquired with 
non-camera sensors. It consists of three steps: selection of ground control points (GCPs) and determination 
of their coordinates in both image and map coordinate systems, determination of an optimal geometric 
transformation model between the image coordinate system and that of a map, and image resampling to re-
construct the image in the map coordinate system.   Image to image registration will then be briefly 
introduced with reference to georeferencing.  Finally we will briefly explain the procedures involved in 
image mosaicking. 
 
4.3.1 Ground Control Point Selection and Coordinate Determination 
 
The 3D location of any real world phenomenon is referenced in a 2D map through a map projection.  In 
fact, a remotely sensed image is a 2D representation (model) of the 3D world.  However, the image 
coordinates are established arbitrarily and they must be transformed into a standard coordinate system.  
Ideally, the correspondence between each image pixel and its ground counterpart is clearly known in a 
simple mathematical form.  However, because it is difficult to track the exact behavior of each distorting 
factor during an imaging process, an analytical relationship between an image pixel and its real world 
counterpart cannot be easily established.  Therefore, the correspondence between the real world and its 
image is usually done through approximation using polynomial equations.  To establish the polynomial 
equations a number of tie points, i.e., GCPs, that can be located both on the image and on the reference 
source must be selected and their coordinates in both systems must be determined.  The reference source 
can be maps, images already georeferenced, orthophotos, or points in the field whose coordinates can be 
measured through surveying methods.  Nowadays, field survey is primarily done using global positioning 
systems (GPS) technology.  Positioning accuracies of various reference sources vary largely (Table 4-1).  
The topographic map accuracy standard has been modified in 1987 (Merchant, 1987) to be measured by a 
root-mean-square (rms) error between measured point coordinates and its true values.  The rms error should 
be less than 0.00025 m X scale factor.  Therefore, for the 1:24,000 scale map, this should be 6 m.  
Topographic maps produced before the adoption of the new accuracy standard were evaluated according to 
the following specifications: for scales less than 1:20,000, no more than 10% of well defined points should 
be greater than 1/50 inch in horizontal error while for scales greater than 1:20,000 no more than 10% of 
those test points should be greater than 1/30 inch in error (Thompson, 1988).  Neither standard states what 
could be the worst case in map coordinate determination.  We suggest that a factor of 2 is multiplied to the 
error limits as specified in the Thompson standard, due to other errors that may be introduced during map 
measurement and digitization (e.g., Gong et al, 1995).  Orthophotos should have an accuracy as good as 
topographic maps.  The rms errors for most image georeferencing tasks range between 0.5 and 1 pixel of 
the raw image.  In the case of Landsat TM image whose orginal resolution is 30 m, the positional accuracy 
for georeferenced TM data would be 15-30 m.  However, if the georefernced TM image is resampled to 
substantially smaller than its original pixel size, say 3 m, positioning accuracy may be improved a bit.  This 

 12



is because detailed resampling allows the image operator to more precisely position GCPs on the image. 
The most accurate reference source is from GPS survey in the field. 
 
GCPs taken from reference sources will be divided into two groups with one group used to determine the 
coefficients in the polynomial transformation, and other group will be used to check the accuracy of the 
transformations. 
 
 
 
 
 
 
 
 
 
Table 4-1.  Positioning Accuracies of Selected Various Reference Sources 
 

Reference Source for Georeferencing Positional Accuracy 
Topographic Map* at 1:24,000 scale 90% or more test points within 12 m 
Topographic Map* at 1:50,000 scale 90% or more test points within 25 m 
Topographic Map** at 1:10,000 scale Limiting root mean square error is 2.5 m 
Topographic Map** at 1:20,000  Limiting root mean square error is 5 m 
Georeferenced images 0.5-1 pixel size of the raw image 
Raw GPS data 5 m in horizontal directions, 10 m in vertical 

direction 
GPS with WAAS capability Better than 1 m 
Differential GPS at geodetic quality Better than 0.1 m 
*   Old national mapping accuracy standard in the US (Thompson, 1988) 
**  New ASPRS mapping standard (Merchant, 1987) 
 
 
GCPs should be selected with care.  They should be permanent characteristic points that can be easily 
identified on the image and on the reference source.  For human settlements, road intersections, large 
buildings, bridges, sport facilities, large parking lots of major commercial centers and harbor facilities.  In 
the rural areas, there may not be a sufficient number of human structures to be used as GCPs.  Stable 
turning points of stream and river systems, natural landscape components that have large contrasts with 
their surrounding areas can also be selected.  Locations such as natural beaches where the water and land 
boundary changes with tide are examples of unsuitable locations for GCP selection.  The distribution of 
GCPs should be related to the severity of image distortions.  If no a priori knowledge is known about 
image distortion, GCPs should be evenly scattered around the area of interest.  If the patterns of image 
distortions are known to some extent, more points should be selected in areas where distortion is severe.  
Depending on the accuracy requirement, different methods may be used to obtain the coordinates of GCPs.  
In a single georeferencing task, GCPs may be obtained from multiple sources. 
   
In the following section, we will introduce the polynomial transformation method and explain the minimum 
number of GCPs required in building various orders of polynomial models. 
 
4.3.2 The Geometric Transformation Model between Image and Reference Source 
 
The purpose of georeferencing is to transform the image coordinates (u,v), to coordinates in a specific map 
projection (x,y) that can then be used or converted into other standard coordinate systems.  Naturally one 
would like to know the relationship between the two coordinate systems.  For a given image point (ui, vi), 
we can find (xi, yi) through a forward transformation, T (Figure 4-7).   
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Figure 4-7.   Georeferencing requires a transformation between the image space and the 
reference coordinate space.  [B /W] 

  
As mentioned earlier that not every step of the imaging process is exactly known, we adopt a simpler and 
widely-used alternative: polynomial approximation.  It takes the following form: 

 u  =  ∑
p=0

n
  ∑
q=0

n
   apq xp • yq    (4-12) 

 v  =  ∑
p=0

n
  ∑
q=0

n
   bpq xp • yq    (4-13) 

where coefficients a's and b's are determined through least squares using GCPs.  For example, we can use 
very low order polynomials such as the affine transformation 

 u  =  a0  + a1x + a2 y 
 v  =  b0 + b1 x + b2 y     (4-14) 

or a bilinear transfomraiton 

 u  =  a0  + a1x + a2 y + a3 xy  
 v  =  b0 + b1 x + b2 y+ b3 xy     (4-15) 

The affine transformation is a first-order transformation that uses a linear model to describe the relationship 
between the two coordinate systems.  It takes care of translation, scaling and rotation between the image 
and the reference coordinate systems.  A minimum of three GCPs is needed to determine the coefficients in 
the affine transformation.  The bilinear system is the simplest nonlinear system that requires a minimum of 
four GCPs to solve.  If an image is divided into blocks whose four corners are composed of GCPs then the 
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bilinear transformation established by each of the four corner GCPs guarantees a continuity from block to 
block during a transformation.  This is an important property for image mosaicking. 

Most commercial software implements a “geometric correction” procedure that allows for establishment of 
polynomial transformations at different orders.  A complete second order polynomial is in the following 
forms: 

 u  =  a0  + a1x + a2 y + a3 xy + a4x2 + a5 y2 
 v  =  b0 + b1 x + b2 y+ b3 xy + b4x2 + b5 y2    (4 -16) 

 

This obviously requires a minimum of six GCPs to solve.  In order to make the coefficients representative 
to the whole image, one must make sure that a sufficient number of GCPs are well distributed all over the 
image.  Therefore, the number of GCPs is usually more than the number of unknowns in the polynomials 
making the problem an over determined one requiring a least squares approach to solve. 

Suppose that we are solving for the first order polynomial with more than three, say n, GCPs,  

  (u1, v1),   (x1, y1) 
  (u2, v2),   (x2, y2) 
   . 
   . 
   . 
  (un, vn),  (xn, yn) 

by substituting the n GCPs coordinates into an affine transformation we obtain 
 
 u1  =  a0  + a1x1 + a2 y1  v1  =  b0 + b1 x1 + b2 y1 
 u2  =  a0  + a1x2 + a2 y2  v2  =  b0 + b1 x2 + b2 y2 
          .                                . 
                             .        and                        . 
                             .                                                   . 
 un  =  a0  + a1xn + a2 yn  vn  =  b0 + b1 xn  + b2 yn 
  

The least squares solution in matrix form: 
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Through some matrix arrangement, the solution for A is 

  A  =  [MT • M]-1 • MT • U  (4-18) 

where MT is the transpose of M.  Similarly, we can solve bo, b1, and b2.  This method can be applied to 
bilinear and higher order polynomial transformations.  Once the coefficients are obtained, the n GCPs used 
in calculating the coefficients in the (x,y) system can be substituted into the polynomial equations to 
calculate a set of estimated coordinates (u’, v’) in the (u, v) system.  The set of estimated coordinates can be 
compared with the original coordinates of the GCPs point by point to analyze the error characteristics.  If 
|u’ – u| or |v’ – v| for a certain GCP is large, then the (x, y) and (u, v) coordinates for this particular GCP are 
re-examined to check if error has been introduced during GCP selection.  If this is not the case, then this 
may imply a large amount of distortion for this point or an area around this point.  More GCPs around this 
point should be taken.  A new set of polynomial coefficients can then be calculated.  The adjustment of the 
number and distribution of GCPs should be done with a consideration of the order of polynomials to be 
used. 

Higher order polynomials can account for local variability provided that a sufficient number of GCPs are 
used.  If the required number of GCPs is not available or their distribution is not even, then higher order 
polynomials will introduce a large amount of distortion in the georeferenced image at places where the 
number of GCPs is sparse.  Usually, for images with a narrow view angle such as in the case of Landsat 
TM, SPOT HRV, IRS, and IKONOS, if their viewing direction is close to nadir, the level of geometric 
distortion on those images is not very series.  Under such circumstances, 10-20 well distributed GCPs 
applied in an affine transformation would be sufficient.  However, when images are acquired from an 
oblique direction with large view angle for mountainous areas, the geometric distortion in an image may 
vary considerably.  A denser distribution of GCPs and higher order polynomials may be necessary.  The 
actual number of GCPs applied to derive the polynomial transformation is determined empirically by 
evaluating the accuracy of transformed points. 

We suggest that accuracy checking be done using a sufficient number of check points (GCPs not used in 
calculation of polynomial coefficients).  The question is how many check points are sufficient?  This 
should be the smallest number of check points that can give a relatively stable estimation of the average 
error.  The coordinates of the m GCP check points in (x, y) system can be substituted in the final 
polynomial transformation equations to generate the estimated (u’, v’).  A root mean squared error (RMS) 
can be calculated through the following 

5.02

1

' ))(/1( ∑
=

−•=
m

i
ii uumrms

     (4-19) 

It can be used to assess the accuracy of the geometric transformation for u.  This can also be done for v.   

From the procedure presented above, we can see that the forward transformation allows us to find out the 
coordinates of a pixel in the (x, y) system.  However, we introduced the determination of the inverse 
transformation.  This is because we will use this inverse process in image resampling.  The forward process 
can be determined in the same manner.   

4.3.3  Image Resampling 

With a forward geometric transform, each pixel (i, j) from image space (u, v) can be converted to a 
desirable reference space (x, y).  A possible result for pixel located at (1, 1) in the image space transformed 
to a reference space at (485030.672 m, 4421625.341 m) in UTM projection.  Because of the distortions 
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involved in the image, it is impossible to have a regularly gridded georefernced image with a forward 
transformation.  The georeferenced image obtained with a forward transformation must be resampled to a 
regular grid.  This is conveniently done using the inverse transformation as introduced in the previous 
section (Figure 4-8).  This process starts from one pixel at a time in the x-y space, determines its 
coordinates in the u-v space.  Obviously, the transformed (u, v) coordinates for the pixel in the (x, y) space 
may not fall right onto a pixel in the (u, v) space of the raw image.  Image resampling can then be done in 
the u-v space by estimating a gray-level value from its surrounding gray-level values in the original image.  
This process is repeated for each pixel at a time until the gray-level values for all the pixels in the (x, y) 
space of the newly specified image area are estimated through interpolation methods. 

Although there exist some other interpolation methods such as inverse distance weight based interpolation 
(Jensen, 1996), the use of sinc function, spline function, or Kriging methods, they are primarily used in 
spatial data whose locations are irregular.  There are three most widely used ways of interpolation for 
image resampling: 

 • Nearest neighbour interpolation 
 • Bilinear (linear in each dimension) 
 • Cubic – a special case of spline 

* *

T -1

Image space x-y space
 

* in u-v space corresponds to the regular grid (pixel) location in the reference coordinate space. 

Figure 4-8.  The transformed image coordinates of pixels regularly arranged in the reference 
space.  [B/W] 

Nearest neighbor interpolation simply assigns the value of a pixel that is closest to the transformed 
coordinates.  The bilinear interpolation uses the gray-level values of the four nearest pixels while the cubic 
interpolation requires 16 pixels.  Figure 4-9 shows an example of the implementation of the bilinear 
interpolation.  The cubic convolution can be done similarly.  All three interpolation methods can be 
implemented through convolutions in 1D space.  In general, this can be achieved using the following 
convolution operation: 

 Z(u)  =    Zd(i) * w (i-u)  =  ∑
≤−

−•
hui

d uiwiz )()(  (4-20)  

where Z(u) is the interpolated gray-level value at transformed coordinate u,   Zd(i)  is the known gray-level 
values for pixels in the original image at pixel location i, w(i- u) is the weight function and, h is the 
neiborhood size for a specific interpolation method.  This is 0.5 for nearest neighbor, 1 for bilinear and 2 
for cubic (Shlien, 1979).  Clearly, the performance of a particular interpolation is controlled by the weight 
function.    

For the linear case, the weight function is 
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where δ = i-u, For the cubic convolution, the weight function is 
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Figure 4-9.  Procedures involved in the bilinear interpolation of one image pixel.  [B/W] 

 

The convolution is extended to 2D interpolation to obtain Z(u, v) by applying a sequence of 1D 
interpolations.  For the case of applying a bilinear convolution, first Z(u, j1) and Z(u, j2)  are calculated 
along each line of the image. Then, Z(u, v) is calculated from the two interpolated values in each line along 
a column (Figure 4-8). Therefore, the four points will be used in the bilinear convolution.  Similarly, four 
interpolations along the row direction and one interpolation along the column direction are needed to 
complete a cubic convolution. 

An example of georeferencing is shown in Figure 4-10, where a raw TM image was registered to a UTM 
projection.  Such data can then be input to a GIS or to be overlaid with other layers of information for 
analysis. 
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Figure 4-10.  Georeferencing of a TM image of City of Berkeley and its surroundings.  Left: the 
original image false color composite of Bands 4, 3, and 2 displayed in red, green and blue 
respectively.  Right: the georeferenced version using cubic interpolation with 8 GCPs.  The image 
in the right is already in UTM coordinates.  Thus the north is along the vertical direction.  The 
orientational change is caused by the oblique orbit of Landsat satellites.  [W] 

 
4.3.4 Image Mosaicking 
 
In some applications, the entire study area requires multiple frames of images.  Such images may be taken 
in the same day as in aerial photography, or on different days as satellite images acquired from polar orbits.  
Images need to be joined together with land features well matched from one image to another.  This process 
is image mosaickng and the product is an image mosaic.  Currently, image mosaicing is a function provided 
by a number of commercially available image analysis software systems as part of their georeferencing 
packages.   
 
There are two pre-requisites for image mosaicing: accurate georeferencing of each of the images and 
sufficient overlap among images to be joined.  The overlap area between two images is useful in reducing 
the radiometric differences between the two images and determination of a cut line between the two 
images. To avoid large radiometric differences from one image to the other on the final image mosaic, it is 
desirable that images to be mosaicked are taken on dates close to each other under similar illumination 
conditions.  With images properly georeferenced, overlapped areas are examined to select a cut line 
between each pair of images to be mosaiced.  Although georeferencing and radiometric correction may 
have been carefully done, linear features such as roads, streams, water boundaries, and other structurally 
prominent targets running from one image across the cut line to the other may still not matching well with 
each other (Figure 4-11a).  Therefore, in cut line selection we should avoid structurally dense areas.  In 
particular, we should avoid running cut lines through areas whose structural orientations are at a right angle 
with the cut lines (Figure 4-11b).   Sometimes the gray-level values between the two images may have a 
contrast along the cut line (Figure 4-11c).  Therefore, the portions of the images to be preserved on each 
side of the cut line need to be further processed.  Using the overlapped portion of the images, we can 
reduce the radiometric difference through normalization (see section 4.2.3) and histogram adjustment (see 
section 4.4.1).  Finally, image blending may be used to further remove local brightness differences and 
structural mismatches along the cut line (Figure 4-11d).  Image blending is done through a process similar 
to image interpolation (see section 4.3.3) and image smoothing (see section 4.4.2).  A buffer (usually 10-20 
pixels wide) on each side of the cut line will be singled out in which the original graylevel of each pixel 
will be replaced by a new one resulting from a weighted averaging.  The weight may be determined purely 
based on inverse distance in a local neighborhood (see Jensen, 1996, for inverse distance based weighting) 
or in combination with the distance of the pixel, whose gray level is to be altered, to the cut line.  Figure 4-
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11 shows examples of cut lines and the effect of image blending in removing radiometric differences 
between the two sides of the cut line.  
 
 
 

  
                  (a)                                      (b)                                  (c)                                     (d) 
 
Figure 4-11.  a.  An improper selection of cut line running across a building.  b.  a proper selection 
of a cut line to avoid the leaning of the building and gray-level contrast of road surface.  c. 
radiometric differences from one side vs. the other.  d.  removal of radiometric difference around 
the cut line through image blending.  (Courtesy of H. Cao and Z. Zhang)   [W] 
 
4.3.5 Summary and Additional Remarks 
 
At the beginning of this section we mentioned that there are two broad categories of geometric processing 
techniques, photogrammetric techniques developed for processing central perspective images acquired by 
cameras and, georeferencing techniques introduced in this section primarily developed for processing of 
satellite images.  These include the selection of GCPs, establishing the geometric transformation model 
(polynomial models), image resmapling, and sometimes image mosaicing.  Although we have not explicitly 
described the procedures for image to image registration, the principles are the same as image 
georeferencing with the reference source being another image.  
 
There are a number of practical issues to be considered when applying georeferencing techniques for 
human settlement applications.  Firstly, what is the acceptable georeferencing accuracy in human 
settlement remote sensing?  Georeferencing is primarily done for the purpose of image to image 
comparison, or integrated use of image data with other spatial data such as maps.  For urban change 
detection involving the comparison of only two Landsat MSS images taken in different years, Jensen 
(1981) suggested that the accuracy for geometric registration (the rms error in polynomial transformation 
measured by GCPs) be within half a pixel.   Townshend et al (1992) found that a misregistration of one 
pixel could cause greater than 50% of false NDVI differences.  They suggested that in order to maintain a 
less than 10% error in NDVI differences a 0.2 pixel RMSE is required for image registration over densely 
vegetated areas.  Dai and Khorram (1998) examined the effects of misregistration to the accuracy of change 
detection from subpixel level of error to several pixels and obtained similar conclusions as Townshend et al 
(1992).  In addition, they found that the near infrared channel of Landsat Thematic Mapper (TM) data was 
most sensitive to registration errors.  Verbyla and Boles (2000) report the over-estimation of change due to 
misregistration with real examples.  It should be noted that an RMSE of less than one pixel is hard to obtain.  
Most image registration procedures report an RMSE derived from coordinates of GCPs that have been used 
in building the image to image coordinate transformation model.  Therefore, RMSE calculated from GCPs 
would usually underestimate registration error.  An unbiased estimate of RMSE can only be calculated 
from independent check points separately selected.  Gong et al (1992) proposed an adaptive filter technique 
to reduce the image differencing errors caused by misregistration that is greater than one pixel.  From an 
economic point of view, a compromise is sought when the minimum cost meets with a maximum tolerable 
error in each specific application. 
 
Secondly, what map projection should be used as the coordinate system for georeferencing?  As mentioned 
earlier, the most commonly used map projection is UTM.  Once image data is transformed into one map 
projection system, the coordinate systems can be easily transformed into other map projection systems.  
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Therefore, it is unnecessary to prefer one map projection to another during georeferencing.  Selecting the 
appropriate map projection to work with should be based on the popularity of projection systems being 
used by other sources of data and the availability of most accurate maps.  The reason for UTM being the 
most common projection system used is because it is used as a standard projection system in topographic 
maps that are usually used as the base reference for other mapping projects.  Map projections are produced 
based on a specific model of the earth, called datum.  The datum is calculated with geodetic methods.  It 
defines the long and short axes of the earth and a surface model of the average sea level covering the entire 
earth.  Different datums may be used for different parts of the world and geodecists are refining the 
parameters using advanced techniques.  For example, Canada and USA used to adopt NAD27 (North 
America Datum 1927) as a standard in map making.  This has been modified in the 1990s by NAD83 
(North America Datum 1983).  The same type of map projection derived from different datums will have 
different coordinates for the same point.  Therefore, it is important to know what type of map projection 
based on which datum is used in image georeferencing. 
 
Thirdly, what type of image resampling algorithm should be applied?  This depends on the application 
purpose.  In the past, the computation time involved in different image resampling methods is a big 
concern.  Image resampling is now a trial task for even a low-end PC.  Usually, cubic convolution results in 
the most accurate image resampling results.  Therefore, unless there is a special reason to preserve the 
original gray-level values, we recommend the use of cubic convolution. 
 
Fourthly, when should georeferencing be done?  In image classification applications (see section 4.5.1), 
some image analysts choose to do geometric correction before image classification while others prefer the 
other way around.  Other tasks in image georeferencing such as GCP selection and polynomial 
transformation model development can be done during the early stage of image processing, but not image 
resampling.  Unless images are analyzed jointly with other sources of data, we recommend that image 
analysis tasks be done before image resampling.   This is especially so in cases where preserving 
radiometric details in each band of image is essential for subsequent analysis.  If maps and other spatial 
data are needed altogether, image resampling may have to be made before subsequent analysis.  In urban 
areas, if maps such as thematic maps and topographic variables are needed, image resampling should be 
done first.  No matter how little an image may be altered during georeferencing, certain structural and 
radiometric information that are critical to image analysts may be lost during the image resampling process.  
The order placement of image resampling should not be limited to image classification.  After some 
assessment of texture information contents, Roy and Dikshit (1994) suggested that texture based analysis 
be made prior to image resampling.   
 
Finally, for urban applications, permanent GCPs may be marked on buildings or selected locations with 
their coordinates surveyed by GPSs (Forster, 1980).  The coordinates of those GCPs can be recorded in a 
database and small image chips for each GCP can also be stored in the database.  When a new image is 
acquired, image chips can be used to match with the corresponding GCPs in the newly obtained image for 
automatic image georeferencing.  This saves time and labor.   
 
 
4.4 Image Enhancement 
 
The goal of image enhancement is to make it easier to extract meaningful information from images.  
Different from the procedures discussed earlier about image radiometric processing whose goal is to reduce 
radiometric errors introduced during image acquisition, image enhancement produces new images with 
image radiometry altered, or images with new indices such as vegetation index and wetness index, or new 
feature images such as edge density and texture.  Frequently used image enhancement procedures include 
histogram adjustment, filtering, image arithmetic, Fourier transforms and wavelet transforms of single 
images, transformation of multispectral images, and image fusion (see Figure 4-2).  Among these 
techniques, some operate with data from the entire image and therefore they are considered as global 
operators, while others are based on local masks and are treated as local operators. 
 
Histogram adjustment, spatial filtering, and image arithmetic are simple operations that have been 
implemented in most commercial image analysis software packages.  Histogram adjustment includes linear 
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stretching and compression, nonlinear operations such as histogram equalization, and taking the square root 
of image gray-level values and then linearly rescaling them to the full gray-level range.  The purpose is to 
improve image displays for visual image analysis. The search for valleys along a histogram is helpful in 
image segmentation of image that have similar gray-level values. It can also be used as an image 
compression tool for subsequent image processing (e.g., texture feature extraction).  A rarely used function 
of nonlinear histogram adjustment is histogram matching. Image filtering can be done in two domains, the 
spatial domain and frequency domain.  In the spatial domain we apply spatial filters such as averaging, 
edge-enhancement, and morphological filters.  Images can be transformed into the spectral domain using 
Fourier transform for various filtering operations such as low pass and high pass filters.  The purpose of 
image filtering is to suppress noises (using averaging or low pass filters) or sharpening structural features 
(using edge filters and high pass filters). Figure 4-12 summarizes three primary histogram adjustment 
schemes.  The gray histogram in the background is the histogram of the original image. Clearly, the linear 
stretch does not alter the histogram shape other than simply stretching it to a wider range of gray levels.  
The square root adjustment first takes square roots of the image gray-level values and then linearly stretch 
them to the full gray-level range.  As a result, ranges of the brighter gray levels are compressed while 
darker gray values are stretched.  The histogram equalization attempts to adjust the histogram distribution 
so that an equal distribution is spread over the entire gray-level range (see the following section).   
 
Figure 4-13 shows five typical kernel filters.  Their effects ranges from smoothing, to high-frequency 
enhanced (edge-sharpening) to high-frequency preservation only.   
 
Image arithmetic is usually a middle step that employs various arithmetic operators for deriving useful 
features from multispectral images.  Among various image arithmetic operations, the most widely used 
methods are image ratioing and differencing.  Taking the image ratio between two image bands can 
suppress illumination differences in the image which tends to normalize the data.   Shadows of cloud and 
high-rise buildings can be reduced on ratio images.  This is why images taken from hilly environment are 
normalized by dividing each band of image by the sum of images of all bands.  Calculating a difference 
between two images of different bands is helpful in reducing the effect of atmospheric path radiance.  Both 
image differencing and ratioing can be specially designed based on spectral characteristics of land cover 
types.  For vegetation, because of the large reflectance contrast between the red and near infrared bands, it 
is often useful to enhance vegetation by generating a ratio or a difference image between near infrared and 
red bands. 
 
Transformation of multispectral images includes generating linear combinations of multispectral bands 
using principal component transformation (PCT, also referred to as principal component analysis, PCA) or 
Kauth-Thomas transform.  PCA is a procedure that redistributes the total variability in the multispectral 
space established from a number of image bands to a new set of mutually uncorrelated principal component 
(PC) images.  The majority of the total variance in the original images is loaded in the first few PC images 
so that the remaining PC images can be treated as noise and discarded in later analysis.  This effectively 
combines information from multiple image bands and reduces data dimensionality.  The procedure is 
statistically based and therefore loses the original physical meaning of each image bands (e.g., Jensen, 
1996; Richard and Jia, 1999). Consequently the interpreter is faced with a subjective judgment as to the 
physical meaning of the respective components. 
 
In contrast, Kauth-Thomas transform (KT Transform, also known as Tasselled Cap Transform) produces a 
new set of physically meaningful and uncorrelated images from the multispectral image (Kauth and 
Thomas, 1976).  This is done through the application of Gram-Schmidt orthogonalization (Jackson, 1983).  
Some KT transformed images contain information about landscape components, particularly for soil 
(brightness image) and vegetation (greenness image).  Each new image is a linear combination of the 
original multispectral images.  Because greenness and brightness images defined in KT transform are 
derived based on spectral characteristics of vegetation and soil objects, they may be more directly 
applicable in quantitative analysis of vegetation and soil conditions.  However, the coefficients for KT 
Transform were only established for Landsat MSS and TM imagery.  With TM imagery a third physically 
meaningful image, wetness image, has been added.  The derived KT coefficients for MSS and TM imagery 
will be given in section 4.4.4 along with the introduction of Gram-Schmidt orthogonalization. 
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Original image 

 
 

Original histogram 

 

Stretch results 

 

Linear stretching histogram 

 
 

Ajustment results 

 

Square root histogram adjustment 

 
 

Equalization results 

 

Histogram equalization 

 
 

 
Figure 4-12.  Examples of Three Typical Histogram Adjustments.  Gray histograms in the 

background are the original histogram.  Red histograms are the adjusted histogram. The 

curve in the histogram is the transfer function for the input brightness in the 

horizontal axis and the output brightness in the vertical axis.  [W] 
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Figure 4-13.  Some Typical Kernel-based Filters  [B/W] 
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There are various types of image fusion such as fusion of images of different spatial resolution, fusion of 
images from different types, fusion of information extracted from images of various sources.  Fusion of 
images can be achieved in a number of ways including the use of principal component analysis and wavelet 
transform among other approaches.  The goal is to make integrated use of spatial and spectral data from 
multiple sources (Gong, 1994).  For remote sensing of human settlements, deriving texture and other spatial 
features from images are important components of image enhancement.  In this section, we will introduce 
the principles of histogram adjustment, morphological filtering, Gram-Schmidt orthogonalization, texture 
feature generation, and image fusion (see Figure 4-2). 
 
4.4.1 Histogram Adjustment 
 
The most straightforward histogram matching is histogram equalization that transforms a 
histogram of any shape to a histogram with the same frequency along the whole range of digital 
numbers (DN) (Figure 4-12). 

 
Figure 4-14. In the continuous case, equalizing the left histogram (f) to the one on the right (f’) by 
reshaping f.  [B/W] 

The equalization process can be realized through histogram matching (Horn and Woodham, 
1979). The cumulative histogram Fc1 of the original image is matched to the new cumulative 
histogram Fc2 (Figure 4-15). 

 

Figure 4-15  Matching the cumulative histogram on the right Fc1 to the Fc2 on the left.  Any 
greylevels from the right (DN) whose cumulative histogram corresponds to a greylevel on the left 
(DN’) will be assigned as DN’.  [B/W] 

The following example shows how an equalization made in discrete digital form through histogram 
matching (Table 4-2) with a 3-bit image (only 23, 8 gray levels).  It starts with the generation of image 
histogram (first two columns in Table X). Then probability, Pi is calculated from frequency, f(vi) (third 
column). A cumulative histogram Fc can be calculated from frequencies. Similarly, the cumulative 
distribution function (CDF) can be derived from probabilities. Based on the cumulative distribution 
function we can convert the original gray levels into gray levels of the equalized image. 
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The assumption for histogram matching is that each detector (sensor) has the same probability of seeing the 
scene and, therefore, the gray-level distribution function should be the same. Thus if two detectors have 
different histograms (a discrete version of gray-level distribution function), they should be corrected to 
have the same histogram.   Figure 4-16 shows two histograms to be matched. 

 

Table 4-2 Histogram, Cumulative Histogram, Cumulative Distribution 
Function (CDF), and the Output in Histogram Equalization 

Grey 
Level  
DN 

Frequency 
f(vi)  

Probability 
Pi  

Cumulative  
histogram Fc  CDF  (23 - 1) 

* CDF  

Output 
DN’ (Round 

off) 

0  4  0.04  4  0.04  0.28 0 
1  17  0.17  21  0.21  1.47 1 
2  15  0.15  36  0.36  2.52 3 
3  18  0.18  54  0.54  3.78 4 
4  24  0.24  78  0.78  4.46 4 
5  12  0.12  90  0.90  6.3 6 
6  0  0  90  0.90  6.3 6 
7  10  0.10  100  1.00  7 7 
   100  1.00        

 

 
100 

 0                                              255                       g1          g2 

F2 

ref. F1  

 
to be 
adjusted  

 

 

 

 

 

Figure 4-16. Matching the histogram F2 to the reference histogram F1. [B/W] 

 
This process is done for each given gray-level, g2, to find its cumulative frequencies fc2(g2) in F2. Then in 
F1 find the gray-level value, g1, such that its cumulative frequency fc1(g1) = fc2(g2). Then assign g1 to g2 
in the histogram to be adjusted. Histogram matching can be used to balance detector responses as a relative 
detector calibration technique.  In image mosaicking, when the overlapped images are different in 
radiometry, it can be used to balance the differences.  When two images acquired by the same sensor over 
the same location but at different times and atmospheric conditions, it can be used to normalize the two 
images. 
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4.4.2 Multispectral Operations and Simple Indices 

The multispectral or vector nature of most remote sensing data makes it possible to use spectral 
transformations that generate new sets of images.  A transformed image may make evident features not 
discernible in the original images or alternatively it may be possible to preserve the essential information 
content of the original images in a reduced number of dimensions.  The preservation is useful for data 
display and presentation as we only have three primary colors available for display and printing.  It is also 
useful for data transmission and storage. 

Arithmetic operators such as addition, subtraction, multiplication, division, and powering or their 
combinations can be used to pixel graylevel values from two or more bands of image data to form new 
images.  Among simple image arithmetic operators, multiplication is rarely used.  Multi-band differencing 
and ratioing allows for reduction of atmospheric effects in different bands.  Band ratioing allows for shade 
effect suppression.  Among these, the ratio between the near infrared and red bands has been commonly 
regarded as an index for vegetation status.  Some additional vegetation indices (VI) are listed below: 

Normalized Difference Vegetation Index (NDVI) 

  NDVI  =  
DNNIR - DNR
DNNIR + DNR

  (4-21) 

This is calculated from the raw data.  For convenience of multidate data comparison, NDVI is calculated 
using reflectance data converted from digital numbers (through various radiometric calibration methods) 

  NDVI  =  
SRNIR - SRR
SRNIR + SRR

  (4-22) 

To suppress the effect of different soil backgrounds on the NDVI, Huete (1988) recommended to use a soil-
adjusted vegetation index: 

  SAVI = 
SRNIR - SRR

SRNIR + SRR + 0.5 •1.5 (4-23) 

Transformed Vegetation Index 

  TVI = {(DNNIR - DNR)/(DNNIR + DNR)}1/2 (4-24) 

Perpendicular Vegetation Index 

  PVI = [(bNIR - BNIR)2 + (bR - BR)2]1/2 (4-25) 

where bNIR = 0.851 BR + 0.355 BNIR 

  bR = 0.355 BR + 0.148 BNIR 
 
Normalized difference water index (NDWI) has been proposed separately to enhance different matters.  
McFeeters (1996) proposed the use of green and near infrared channels to highlight surface water bodies 
while Gao (1996) proposed the use of spectral data in the 0.86 µm and 1.24 µm to quantify vegetation 
liquid water conditions.  Therefore, the McFeeters’ index takes the form of  
 

( ) /(MNDWI Green NIR Green NIR= − + )  (4-26) 
and the Gao’s NDWI is  
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0.86 1.24 0.86 1.24( ) /(GNDWI )ρ ρ ρ ρ= − +  (4-27) 
where  ρ is the reflectance or radiance. 
 
There are many indices proposed but they are mostly developed for quantitative vegetation remote sensing.  
They may be useful in the studies of environmental pollution in human settlement remote sensing. 
 
 
4.4.3 Principal Component Analysis 
 

The dimension of the multispectral space constructed by a remotely sensed image is the number of spectral 
bands (nb).  For example, Landsat MSS image constructs a four dimensional multispectral space.  For 
Landsat TM image, the multispectral space will have seven dimensions.  Spectral bands of sensors are 
chosen based on their effectiveness on the monitoring of certain physical properties and differentiation of 
certain surface cover types.  Because these spectral bands are always correlated, some of the spectral 
dimensions are redundant.  It is desirable to reduce the redundancy by using a smaller number of 
dimensions than nb to represent the original image without losing much of the data variability.  Principal 
component analysis (PCA) is a perfect tool for this.  PCA rotates the original multispectral axes to a new 
set of principal component (PC) axes that are orthogonal to each other and are orientated along the 
eigenvector directions.  The eigenvectors can be sorted according to their corresponding eigen values in a 
descending order so that the first PC axis is the eigenvector having the greatest eigen value and the last PC 
corresponds to the eigenvector with the lowest eigen value.  Each eigen value is the amount of data 
variability recorded in the corresponding PC image after PCA is done.   

For a given image with nb spectral bands.  PCA is realized in four steps: construction of variance-
covariance matrix, V, based on pixel values of image samples; find and sort the nb eigen values (λ1, λ2, …, 
λnb)T; solve for the nb eigenvectors G = (g1, g2, …, gnb); and transform (project) the original image into the 
nb eigenvector directions to produce nb PC images.  The last step is also called principal component 
transformation (PCT). 

           Covariance Matrix and Correlation Matrix.  The means are first calculated in vector form 

                                      m  (4-28) 1/
i

N= ∑ ix

where N is the number of pixels sampled from the original image.  x and m are vectors each with nb 
elements (e.g., m  =  (m1, m2, …, mnb)T).  For general purpose PCA, all pixels or a systematic sampling of 
the image is used.  If the PCA is used to enhance certain phenomena such as urban areas, more samples 
from the urban areas or perhaps only pixels from the urban area should be selected.   

For variance-covariance matrix V, since N is normally very large we can approximately write 

                                        V x  (4-29) 1/ {( )( ) }T

i
N= − −∑ i im x m

V is an nb x nb symmetric matrix.  The correlation matrix R can be obtained from V. 

  R  =  











1 r12 ..... r1nb

r21 1 ..... .....

. . . .

. . . .

rnb1 rnb2 ..... 1

  (4-30) 
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  rij  =  
Vij

Vii - Vjj
      , rij  =  rji 

        The Principal Component Transformation.  PCT has another name called Hoteling transformation. 

Its purpose is to find a new coordinate system in which data can be represented without correlation. A 
vector system X is transformed into Y.  A rotation matrix is used to complete the process. The rotation 
matrix is G, 

  Y  =  GTx   (4-31) 

G can be found through deriving the eigenvalues and eigenvectors from the covariance matrix Vx.  To find 
eigenvalues we need to solve 

  |Vx - λI|  =  0   (4-32) 

where "I" is the identity matrix.  λ is the eigenvalue vector (λ1, λ2, ...., λnb)T.  For each non-zero 

eigenvalue, λi, we can find its corresponding eigenvector gi = (gi1, gi2, ...., ginb)T .  This can be obtained 
from  

  [Vx - λiI] • gi   =   0 (4-33) 

Each eigenvector gi is normalized to unit vectors.  The rotation matrix G can then be determined by 

  G  =  (g1, g2, ...., gnb) 

Some of the properties of PCA are listed in the following: 

(1) because the eigenvectors are unit vectors, rotation will not affect the total variance of the 
original data, i.e. the sum of λi is the same as the sum of variances in V 

(2) transformation G simply redistributes the variances in V 

(3) data variance along one axis in the new coordinate system is the same as its corresponding 
eigenvalue. 

(4) λi devided by the total variance is called a loading factor of new axis (PC) i. 

For multispectral space with nb dimensions, after PCT, some of the λi’s are so low that their corresponding 
loading factors can be ignored in subsequent analysis.   We can therefore make use of only those principal 
components with high loading factors in data analysis.  By so doing, we will not lose much of the original 
data variability.  This serves as a purpose for the reduction of data dimensionality.   

Figure 4-17 shows an example of PCT applied to a TM image of Berkeley, California.  The image was 
taken in July 1990 during the dry seasons of this area.  The first image is a color composite of the original 
imagery.  The remaining are the first five principal component (PC) images.  Table 4-3, lists the variance-
covariance matrix used to calculate the eigenvalues and their corresponding eigenvectors (arranged in each 
row).  The percentage is the loading factor for the corresponding eigenvalue in the same row.  It can be 
seen that the first PC image explains over 70% of the total variance of the original image.  The first two PC 
images account for over 95% of the total variance.  It can be seen that the first PC image agrees generally 
well with the color composite image.  From the eigenvector values of PC 1 image, we can see that it is a 
weighted average of the original six bands of images with Bands 5, 4 and 7 having a stronger contribution.  
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We can regard this image as depicting surface brightness.   On PC 1 image, the paved surface, dry soil and 
dry vegetation (grass and shrubs) appear brighter. The second PC image contrast paved surface with 
vegetation.  The eigenvector values for PC 2 show all but Bands 4 and 5 have negative weights.  Because 
the weights for Band 5 and 7 are low, this image can be regarded as the Band 4 image subtracted by the 
Bands 1, 2, and 3.  The PC 3 image shows the difference between the two middle infrared bands and the 
visible and near infrared bands.  Although PC 4 and PC 5 images look rather noisy and indeed they do not 
carry much of the total variance of the original images, the eigenvector values indicates that they are 
dominated by the difference between the band 7 and band 5, and between band 3 and band 1, respectively.  
An analysis of the eigenvector structure, we can see that the dominant variability in a multispectral image is 
the brightness, followed by the difference between near infrared and the other spectral bands.  PCA 
decomposes the differences in an image and allows us to search for the causes of those differences.  
However, the axes as defined by the eigenvectors varies with image statistics.  Images covering different 
types of landscapes may have considerably different eigen structures.  Table 4-6 shows the different 
eigenstructure of two types of landscape in Figure 4-15a.  The red boxed area is primarily an urban area 
that includes the Berkeley downtown, University of California campus and the surrounding residential 
areas.  The green boxed area is a natural area covering part of Strawberry Canyon and Tilden Park with 
conifers, eucalyptus trees, and shrubs and grasslands distributed at various portions of the hills and valleys.   

 

   
  (a)    (b)    (c) 
 

   
  (d)    (e)    (f) 
 
Figure 4-17.  Principal component transformation of a TM image acquired over Berkeley, 
California, July 1990.  a. color composite of TM Bands 1, 2, and 3 displayed in blue, green, and 
red.  b-f, the principal component images corresponding to the first eigenvalues. [B/W]  
 

From PC1 of the urban area, the dominant bands are Bands 1, 3, and 5.  For PC2, this changes to Bands 4 
and 5 with negative loadings.  These are clearly different than the eigen structure of the entire image.  For 
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the natural image, its PC1 is dominated by the two middle infrared bands while PC 2 is almost completely 
dominated by a positive loading of the near infrared band.   
 
 
Table 4-3.  Covariance Matrix, Eigenvalues and Their Corresponding Eigenvectors and 
Factor Loadings 
 
 
    TM 1 TM 2 TM 3 TM 4 TM 5 TM 7   
TM 1   350.92             
TM 2  185.38 102.65        
TM 3  289.87 163.15 281.89       
TM 4  -47.62 2.71 61.94 681.26      
TM 5  176.83 135.28 333.84 709.11 1229.49     
TM 7   193.28 120.03 248.41 273.50 604.88 348.10   
  Eigenvalues Eigenvectors      Loading factor
Eigen 1 2121.35 0.15 0.11 0.24 0.45 0.75 0.38 70.85%
Eigen 2 729.45 -0.62 -0.31 -0.46 0.51 0.10 -0.18 24.36%
Eigen 3 126.37 0.40 0.20 0.12 0.72 -0.45 -0.25 4.22%
Eigen 4 9.32 -0.09 -0.20 -0.05 0.13 -0.45 0.86 0.31%
Eigen 5 6.29 -0.61 0.16 0.76 0.06 -0.14 -0.07 0.21%
Eigen 6 1.54 0.24 -0.89 0.37 0.02 0.02 -0.15 0.05%
 
 
Table 4-4.  Eigen Structure of Two Different Types of Landscapes 
 
    TM 1 TM 2 TM 3 TM 4 TM 5 TM 7   
 Urban Eigenvalues Eigenvectors      Loading factor
Eigen 1 1040.32 0.58 0.32 0.49 0.10 0.44 0.34 75.84%
Eigen 2 217.57 0.33 0.11 0.18 -0.78 -0.49 -0.06 15.86%
Eigen 3 90.90 -0.38 -0.19 -0.09 -0.57 0.52 0.46 6.63%
Eigen 4 13.68 -0.60 0.19 0.71 0.09 -0.27 0.14 1.00%
Eigen 5 7.51 0.12 -0.13 -0.23 0.22 -0.48 0.80 0.55%
Eigen 6 1.69 -0.18 0.89 -0.40 -0.06 0.00 0.07 0.12%

Natural    

Eigen 1 712.36 0.25 0.17 0.33 0.09 0.77 0.44 74.91%
Eigen 2 204.43 -0.15 -0.05 -0.22 0.94 0.14 -0.17 21.50%
Eigen 3 28.19 0.59 0.33 0.49 0.29 -0.46 -0.07 2.96%
Eigen 4 2.90 -0.31 -0.05 0.05 0.17 -0.41 0.84 0.30%
Eigen 5 2.24 0.64 -0.05 -0.72 -0.01 -0.03 0.27 0.24%
Eigen 6 0.78 -0.25 0.92 -0.28 -0.06 0.01 0.00 0.08%
Urban – the left box in Figure 4-17; Natural – the right box in Figure 4-17. 
 
 

The above loading factors indicate that there are only 2-3 significant axes in the original six bands of TM 
imagery of the example area.  The eigenvectors, i.e., the rotation axes, vary from one landscape to another.  
Interestingly, the first eigenvector all reflect surface brightness while the second one point to the direction 
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of  vegetation difference.  This has some relevance to the indices developed from KT transform which will 
be introduced shortly.  The application of PCA in classification (keeping the maximum variance) serves the 
purpose of reducing data complexity and improving efficiency.  A lot of efforts have been devoted to the 
use of PCA in change detection.  When it is applied to multi-date images, change information may be 
preserved in those PC images with low λi’s (e.g., Richard, 1984; Fung and LeDrew, 1987;88).  Gong 
(1993) applied PCA to multi-date difference images and obtained change information in the first two 
principal components.  Sometimes the PC images having low loading factors may contain important subtle 
information for a particular application.  For examples, striping can be highlighted in some of the PCs with 
low loading factors revealing the problem of sensor detectors.   
 
 
4.4.4 Gram-Schmidt Orthogonalization 
 
Gram-Schmidt orthogonalization is a mathematical tool that operates rotational transformation in n-
dimensional space, resulting in a series of orthogonal axes, each of which is a linear combination of the 
original axes.   Therefore, it is a linear transform, and is sometimes called Gram-Schmidt transform (GST).   
 
It requires m+1 pixel gray level vectors (X1, X2, …, Xm+1) to derive m indices.  The first index is defined by 
a difference vector between two of the gray-level vectors, X2 – X1.  Normalizing this vector to unit length 
we have the coefficients for the first index, V1 = (X2 – X1)/| X2 – X1|.  The coefficients for the second index 
are obtained by finding the unit vector along the perpendicular line of V1 passing through X3.  This can be 
obtained by first projecting vector X3 – X1 to the direction of V1, (X3 – X1)•V1V1, then subtracting the 
projected vector from vector X3 – X1 to obtain the perpendicular vector to V1, U2 = (X3 – X1) - (X3 – 
X1)•V1V1.  Normalizing U2 we have the coefficients of the second index: V2 = U2/|U2|.  To derive the 
coefficients for the third index, we first find the line that is perpendicular to both V1 and V2 and passing 
through X4.  U3 = (X4 – X1) –  (X4 – X1)•V1V1 –  (X4 – X1)•V2V2.  Similarly we get V3 by normalizing U3, 
V3 = U3/|U3|.  This procedure guarantees that all indices derived in this manner is perpendicular to each 
other implying the newly generated indices having no correlation among them.  This procedure can be 
generalized to produce m indices and for the mth index, Um = (Xm+1 – X1) – (Xm+1 – X1)•V1V1 – (Xm+1 – 
X1)•V2V2 – … – (Xm+1 – X1)•Vm-1Vm-1 followed by a normalization of Um.   
 
Because gray-level vectors can be selected by the image analyst, this technique gives us flexibility in 
designing physically meaningful transforms for image enhancement.  This is a distinct property of GST as 
compared to PCA which is totally based on the statistical properties of selected sample pixels.   
 
A successful use of GST in remote sensing is the development of the Kauth-Thomas transform (KT 
Transform), also known as tasseled cap transform.  Applying GST to a multispectral image, Kauth and 
Thomas (1976) developed a set of new indices within the multispectral space constructed by the four bands 
of Landsat multispectral scanner (MSS).  The new indices are brightness, greenness, yellowness and 
nonesuch.  The brightness was developed based on a soil line linked between wet and dry soils in the 
multispectral space while the greenness was developed along a line drown from a closed canopy vegetation 
point perpendicular to the soil line.  These two indices can explain the majority of the image variation and 
are found to be related to surface cover conditions while the yellowness and nonesuch are sensitive to 
conditions of haze and water vapor in the atmosphere, respectively (Jackson, 1983).  Since the last two 
indices were related to exogenous factors that are considered as noise in terrestrial remote sensing, only 
brightness and greenness have been widely used for Landsat MSS data.  The linear coefficients for 
transforming the MSS data into the four indices are listed in Table 4-5.  For Landsat TM data the number of 
useful indices has been increased to three – brightness, greenness and wetness (Table 4-6) (Crist and 
Cicone, 1984). 
 
 
 
 
 
 
 

 32



 
Table 4-5.  KT Transform coefficients for Landsat MSS data (Kauth and Thomas, 1976)  
 
 Brightness Greenness Yellowness Nonesuch (noise) 
MSS Green Band 0.433 -0.290 -0.829 0.223 
MSS Red Band 0.632 -0.562 0.522 0.012 
MSS NIR Band 1 0.586 0.600 -0.039 -0.543 
MSS NIR Band 2 0.264 0.491 0.194 0.810 
 
 
Table 4-6 shows the KT coefficients for TM imagery.  Because GST enables us to create physically 
meaningful indices based on knowledge extracted from the images under investigation, it can be applied to 
images acquired by any type of sensor to produce either image specific or sensor specific transforms.  For 
different applications, a different set of indices can be produced using GST.   
 
 
Table 4-6.  Two sets of  KT transform coefficients for Landsat TM data (Crist and Cicone, 
1984) 
 
 Brightness Greenness Wetness 
TM Band 1 – blue  0.304 -0.285 0.151 
TM Band 2 – green  0.279 -0.244 0.197 
TM Band 3 – red  0.474 -0.543 0.328 
TM Band 4 – NIR  0.559 0.724 0.341 
TM Band 5 – mid IR 1 0.508 0.084 -0.711 
TM Band 7 – mid IR 2 0.186 -0.180 -0.457 
* the two sets of coefficients are taken from the two references 
 
With the vectors listed in Tables 4-5 and 4-6, we can arrange them into a matrix K. K can be applied to the 
gray level vector (X=(x1, x2, …, xnb)T) of each pixel in an image to produce a series of transformed images.  
For example, any set of the indices in Table 4-6 can be used to any TM image with the following equation: 
 

                                       (4-34) T

B
G K
W

 
  =
 
 

X

where B G and W respectively stands for the brightness, greenness, and wetness.  T denotes the transpose 
of matrix K. 
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