Supplementary Table 1(a): Complete list of promoter elements in the un-pruned model for yeast α-arrest experiment, listed in order from the last to be pruned from the model to the first. “Putative site” is the assignment of known binding site names to the elements. If the element does not match exactly to any known motif, it is labeled new\(_x\), where \(x\) is the order of appearance in the list. Many of the “new” motifs are similar to and may be variations of known motifs. “Phase” is the phase of the cell cycle at which the effect of the promoter element is strongest. The columns \(n\) and \(m\) are the number of genes in the training set and in Spellman’s 800 list, respectively, that contain the element. The column “p-value” contains the p-values for \((n, m)\) computed using Fisher’s exact test.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Motif</th>
<th>Putative Site</th>
<th>Phase</th>
<th>(n)</th>
<th>(m)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CGCGT</td>
<td>d-MCB</td>
<td>G1</td>
<td>582</td>
<td>380</td>
<td>8 (\times) 10(^{-21})</td>
</tr>
<tr>
<td>2</td>
<td>ACGCGT</td>
<td>MCB</td>
<td>G1</td>
<td>180</td>
<td>141</td>
<td>3 (\times) 10(^{-16})</td>
</tr>
<tr>
<td>3</td>
<td>(CGAAAAT,(TGTTCCTC,CGCGT,30),400)</td>
<td>new1, new2, d-MCB</td>
<td>S</td>
<td>5</td>
<td>5</td>
<td>3 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>4</td>
<td>TTTCGCG</td>
<td>SCB</td>
<td>mixed</td>
<td>160</td>
<td>123</td>
<td>2 (\times) 10(^{-13})</td>
</tr>
<tr>
<td>5</td>
<td>(GGTACGC,CGCGT,30)</td>
<td>new3, d-MCB</td>
<td>G1</td>
<td>14</td>
<td>14</td>
<td>6 (\times) 10(^{-5})</td>
</tr>
<tr>
<td>6</td>
<td>(CGTTCTG,(TCCGAGC,CGCGT,100),400)</td>
<td>new4, CSRE or GAL4, d-MCB</td>
<td>S (?)</td>
<td>5</td>
<td>5</td>
<td>3 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>7</td>
<td>(TTAAGCT,(GGGGATC,TSS START,400),400)</td>
<td>new5, new6</td>
<td>G1</td>
<td>7</td>
<td>7</td>
<td>8 (\times) 10(^{-3})</td>
</tr>
<tr>
<td>8</td>
<td>GCTGG</td>
<td>SWI5</td>
<td>mixed</td>
<td>809</td>
<td>400</td>
<td>7 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>9</td>
<td>TTGTTT</td>
<td>SFF</td>
<td>S/G2</td>
<td>1131</td>
<td>610</td>
<td>4 (\times) 10(^{-7})</td>
</tr>
<tr>
<td>10</td>
<td>(TTCTGTG,(CGCGAAT,TSS START,400),400)</td>
<td>SCB, new7</td>
<td>G1</td>
<td>5</td>
<td>4</td>
<td>1 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>11</td>
<td>(GCTGTG,(GACCAAG,TTGTTT,30),400)</td>
<td>SCB, new7</td>
<td>G1</td>
<td>5</td>
<td>5</td>
<td>3 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>12</td>
<td>GGCTCCG</td>
<td>new8</td>
<td>G2/M/G1</td>
<td>38</td>
<td>25</td>
<td>2 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>13</td>
<td>(GCTTCTC,(TTCTGTG,TTTCGCG,100),400)</td>
<td>new4, SCB,SCB</td>
<td>G1</td>
<td>6</td>
<td>6</td>
<td>2 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>14</td>
<td>GCCCGTT</td>
<td>MCM1</td>
<td>M</td>
<td>59</td>
<td>27</td>
<td>8 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>15</td>
<td>(CTGTGCCT,GGCTGG,100)</td>
<td>new9, SWI5</td>
<td>M/G1</td>
<td>13</td>
<td>8</td>
<td>3 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>16</td>
<td>(GATTCC,CTGGCTG,GGCTGG,100),400)</td>
<td>new10, new9, SWI5</td>
<td>M/G1</td>
<td>9</td>
<td>4</td>
<td>7 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>17</td>
<td>(TGCTCTGG,CGCGT,30)</td>
<td>M/G1</td>
<td>7</td>
<td>7</td>
<td>8 (\times) 10(^{-3})</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>(CGCGT,CGCGT,30)</td>
<td>d-MCB,d-MCB</td>
<td>G1</td>
<td>82</td>
<td>77</td>
<td>1 (\times) 10(^{-18})</td>
</tr>
<tr>
<td>19</td>
<td>(GGGACCTC,TTGTTT,400)</td>
<td>new11, SFF</td>
<td>G1</td>
<td>17</td>
<td>14</td>
<td>6 (\times) 10(^{-3})</td>
</tr>
<tr>
<td>20</td>
<td>(TTTTCG,(GGGCTCC,TTGTTT,400),400)</td>
<td>new12, new11, SFF</td>
<td>G1</td>
<td>11</td>
<td>9</td>
<td>3 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>21</td>
<td>(TCGCCGGG,TTGTTT,30)</td>
<td>new13, SFF</td>
<td>S, S/G2</td>
<td>5</td>
<td>5</td>
<td>3 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>22</td>
<td>(GGCTACTC,TTTCTCTA,TTGTTT,400)</td>
<td>new14, MCM, SFF</td>
<td>M</td>
<td>6</td>
<td>6</td>
<td>2 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>23</td>
<td>(CTACACG,TSS START,100)</td>
<td>new15</td>
<td>G1</td>
<td>12</td>
<td>11</td>
<td>3 (\times) 10(^{-3})</td>
</tr>
<tr>
<td>24</td>
<td>(CGGTGGG,GCCTGG,100)</td>
<td>new16, MCM1</td>
<td>G2/M</td>
<td>5</td>
<td>5</td>
<td>3 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>25</td>
<td>(TTTGTGGC,CGCGT,CGCGT,30),100)</td>
<td>new17, d-MCB, d-MCB</td>
<td>M/G1</td>
<td>7</td>
<td>5</td>
<td>2 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>26</td>
<td>(CAGCCACT,TTTCTCTA,TTGTTT,400),400)</td>
<td>new18, MCM1, SFF</td>
<td>M</td>
<td>8</td>
<td>6</td>
<td>1 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>27</td>
<td>(TTTGGCC,GGTAGCT,30)</td>
<td>HAP2, SWI5</td>
<td>mixed</td>
<td>6</td>
<td>6</td>
<td>2 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>28</td>
<td>(TTTCTCTG,CCCGT,100)</td>
<td>SCB, d-MCB</td>
<td>G1/S</td>
<td>40</td>
<td>34</td>
<td>3 (\times) 10(^{-6})</td>
</tr>
<tr>
<td>29</td>
<td>(TTTGTGCT,TTGCGG,100)</td>
<td>SCB, SCB</td>
<td>G1</td>
<td>12</td>
<td>12</td>
<td>2 (\times) 10(^{-4})</td>
</tr>
<tr>
<td>30</td>
<td>(CGCGT,(TTTCTGTTTCCCGC,100),100)</td>
<td>d-MCB, SCB, SCB</td>
<td>G1</td>
<td>11</td>
<td>11</td>
<td>5 (\times) 10(^{-4})</td>
</tr>
<tr>
<td>31</td>
<td>(TGGTCTGG,TTTCCGCG,400)</td>
<td>new19, SCB</td>
<td>S</td>
<td>9</td>
<td>6</td>
<td>3 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>32</td>
<td>(GGTACGT,GCCCGGT,400)</td>
<td>new6</td>
<td>G1</td>
<td>43</td>
<td>29</td>
<td>1 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>33</td>
<td>(TTGTTCTG,CCCGT,CGCGT,30),100)</td>
<td>new20, SWI5</td>
<td>M/G1</td>
<td>19</td>
<td>12</td>
<td>2 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>34</td>
<td>(TTTGGGCT,TTTCTGTTTCCCGC,100),400)</td>
<td>SCB, SCB, MCB</td>
<td>G1/S</td>
<td>24</td>
<td>20</td>
<td>7 (\times) 10(^{-4})</td>
</tr>
<tr>
<td>35</td>
<td>(TTTGGCT,TTTCTTGTG,100)</td>
<td>MCM, SFF</td>
<td>M</td>
<td>178</td>
<td>105</td>
<td>7 (\times) 10(^{-3})</td>
</tr>
<tr>
<td>36</td>
<td>(CAGCCACT,TTTCTCTA,TTGTTT,400),400)</td>
<td>new7</td>
<td>G1</td>
<td>62</td>
<td>36</td>
<td>1 (\times) 10(^{-1})</td>
</tr>
<tr>
<td>37</td>
<td>(TCGCCGGG,CGCGT,100)</td>
<td>CSRE or GAL4, d-MCB</td>
<td>S</td>
<td>9</td>
<td>7</td>
<td>9 (\times) 10(^{-2})</td>
</tr>
<tr>
<td>38</td>
<td>(TGCTCTGTG,CGCGT,30)</td>
<td>new2, d-MCB</td>
<td>S</td>
<td>7</td>
<td>7</td>
<td>8 (\times) 10(^{-3})</td>
</tr>
<tr>
<td>39</td>
<td>(GACCCAG,TTGTTT,30)</td>
<td>ROX1, SFF</td>
<td>G1</td>
<td>10</td>
<td>8</td>
<td>5 (\times) 10(^{-2})</td>
</tr>
</tbody>
</table>
Supplementary Table 1(b): Information content I_{seq} and corresponding p-values for the 20 base flanking sequences of promoter elements found for yeast α-reassort experiment.

<table>
<thead>
<tr>
<th>Promoter element (p)</th>
<th>Word (w)</th>
<th>$N(p, w)$</th>
<th>I_{seq}</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGCGGT</td>
<td>CGCGGT</td>
<td>1044</td>
<td>0.18</td>
<td>6×10^{-7}</td>
</tr>
<tr>
<td>ACAGGT</td>
<td>ACAGGT</td>
<td>428</td>
<td>0.27</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>(CGAAAAT,(TGTTCTC,CGCGT,30),400)</td>
<td>CGAAAAT</td>
<td>6</td>
<td>11.77</td>
<td>7×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGTTCTC</td>
<td>5</td>
<td>14.66</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td></td>
<td>CGCGGT</td>
<td>6</td>
<td>10.69</td>
<td>6×10^{-5}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>182</td>
<td>0.63</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>(GGTACGC,CGCGT,30)</td>
<td>CGCGGT</td>
<td>17</td>
<td>15.59</td>
<td>8×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>GGTACGC</td>
<td>14</td>
<td>24.78</td>
<td>7×10^{-12}</td>
</tr>
<tr>
<td>(CGTTCGCT,(TCCGAGC,CGCGT,100),400)</td>
<td>CGCGT</td>
<td>7</td>
<td>7.70</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TCCGAGC</td>
<td>5</td>
<td>16.10</td>
<td>3×10^{-12}</td>
</tr>
<tr>
<td></td>
<td>CGTTCGTC</td>
<td>5</td>
<td>15.56</td>
<td>4×10^{-11}</td>
</tr>
<tr>
<td>(TAAAGGT,(GGGGATC,TSS START,400),400)</td>
<td>GGGGATC</td>
<td>7</td>
<td>21.46</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>TAAAGGT</td>
<td>3</td>
<td>13.01</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td>GCTCGG</td>
<td>GCTCGG</td>
<td>1247</td>
<td>0.09</td>
<td>8×10^{-31}</td>
</tr>
<tr>
<td>TTGGTT</td>
<td>TTGGTT</td>
<td>2270</td>
<td>0.47</td>
<td>0</td>
</tr>
<tr>
<td>(TTGCGTG,(CCGGAAT,TSS START,400),400)</td>
<td>CGGGAAT</td>
<td>5</td>
<td>7.35</td>
<td>5×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>TTGCGTG</td>
<td>5</td>
<td>7.17</td>
<td>6×10^{-1}</td>
</tr>
<tr>
<td>(GCTCGT,(GAACCAG,TGTGTTT,30),400)</td>
<td>GAACCAG</td>
<td>5</td>
<td>11.73</td>
<td>8×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGTTT</td>
<td>5</td>
<td>10.16</td>
<td>6×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>GCTCGT</td>
<td>9</td>
<td>8.15</td>
<td>6×10^{-8}</td>
</tr>
<tr>
<td>(GCCTCCG</td>
<td>GCCTCCG</td>
<td>39</td>
<td>1.18</td>
<td>9×10^{-3}</td>
</tr>
<tr>
<td>(GTGCTTG,(TTCGGGT,TTTGCGC,100),400)</td>
<td>TTCGGGT</td>
<td>7</td>
<td>5.63</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>TTCGGGT</td>
<td>6</td>
<td>6.50</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGC</td>
<td>8</td>
<td>4.43</td>
<td>5×10^{-1}</td>
</tr>
<tr>
<td>(GATTC,(CTGCGGT,GCTGG,100)</td>
<td>CTGCGGT</td>
<td>9</td>
<td>4.47</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>GATTC</td>
<td>15</td>
<td>2.12</td>
<td>5×10^{-1}</td>
</tr>
<tr>
<td>(TGCTGCG,CGCGT,30)</td>
<td>TGCTGCG</td>
<td>10</td>
<td>2.09</td>
<td>4×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>CGCGT</td>
<td>8</td>
<td>5.15</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>TTGCGG</td>
<td>7</td>
<td>4.62</td>
<td>7×10^{-1}</td>
</tr>
<tr>
<td>(CGCGT,CGCGT,30)</td>
<td>CGCGT</td>
<td>0</td>
<td>0.76</td>
<td>0</td>
</tr>
<tr>
<td>(GGGCCTCC,TCTGTGTTT,400)</td>
<td>GGGCCTCC</td>
<td>17</td>
<td>4.00</td>
<td>2×10^{-7}</td>
</tr>
<tr>
<td></td>
<td>TTGGTTT</td>
<td>10</td>
<td>1.78</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>(TTTTCG,(GGGGCTC,TTGTTT),400)</td>
<td>GGGGCTC</td>
<td>11</td>
<td>5.51</td>
<td>9×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGTTT</td>
<td>19</td>
<td>2.92</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTCGTT</td>
<td>15</td>
<td>4.95</td>
<td>4×10^{-8}</td>
</tr>
<tr>
<td>(TGGCGGG,TGTGTTT,30)</td>
<td>TGGCGGG</td>
<td>5</td>
<td>14.10</td>
<td>2×10^{-8}</td>
</tr>
<tr>
<td></td>
<td>TTGGTT</td>
<td>7</td>
<td>8.63</td>
<td>8×10^{-5}</td>
</tr>
<tr>
<td>(GCTACTC,(TTTCTCTA,TTGTTT),400)</td>
<td>GCTACTC</td>
<td>6</td>
<td>10.90</td>
<td>3×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>TTTCTTA</td>
<td>6</td>
<td>11.21</td>
<td>9×10^{-7}</td>
</tr>
<tr>
<td></td>
<td>TTGGTT</td>
<td>12</td>
<td>5.42</td>
<td>9×10^{-6}</td>
</tr>
<tr>
<td>(CTACACG,TSS START,100)</td>
<td>CTACACG</td>
<td>7</td>
<td>10.14</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>(GCGGT,GCCCCTG,100)</td>
<td>GCCCCTG</td>
<td>6</td>
<td>6.75</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>GCGGT</td>
<td>7</td>
<td>4.64</td>
<td>7×10^{-1}</td>
</tr>
<tr>
<td>(TTGTTCG,(CGCGT,CGCGT,30),100)</td>
<td>CGCGT</td>
<td>26</td>
<td>2.68</td>
<td>2×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>TTGTTCG</td>
<td>9</td>
<td>5.35</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td>(CAGCCAT,(TTTCTTA,TGTGTTT),400)</td>
<td>CAGCCAT</td>
<td>10</td>
<td>2.08</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TTTCTTA</td>
<td>10</td>
<td>4.49</td>
<td>5×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>TTGGTT</td>
<td>15</td>
<td>2.45</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td>(TTTGCGG,GGCGG,30)</td>
<td>TTGGG</td>
<td>7</td>
<td>4.81</td>
<td>6×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>TTGGG</td>
<td>6</td>
<td>6.67</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td>(TTGGCGT,CGCGG,100)</td>
<td>CGCGG</td>
<td>57</td>
<td>0.77</td>
<td>2×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>45</td>
<td>1.30</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>(TTGCGTG,TTTGCGC,100)</td>
<td>TTGCGTG</td>
<td>12</td>
<td>3.77</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>14</td>
<td>2.31</td>
<td>5×10^{-1}</td>
</tr>
<tr>
<td>(CGCG,(TTTGCTG,TTTGCGC,100),100)</td>
<td>CGCG</td>
<td>17</td>
<td>2.96</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>11</td>
<td>4.94</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>12</td>
<td>3.23</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>TTGGTCG</td>
<td>12</td>
<td>5.44</td>
<td>8×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>9</td>
<td>5.50</td>
<td>1×10^{-2}</td>
</tr>
<tr>
<td>(TGGTCTG,TTTGCGG,400)</td>
<td>TGGTCTG</td>
<td>27</td>
<td>1.92</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>(GGGGATC,TSS START,400)</td>
<td>GGGGATC</td>
<td>23</td>
<td>1.47</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td>(TAAACG,TGCTGG,100)</td>
<td>TAAACG</td>
<td>20</td>
<td>1.24</td>
<td>9×10^{-1}</td>
</tr>
<tr>
<td>(TTTTCG),(TTGCGT,CGCGT,100),400)</td>
<td>CGCGT</td>
<td>33</td>
<td>1.69</td>
<td>6×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>TTGCGTG</td>
<td>28</td>
<td>1.82</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGGG</td>
<td>31</td>
<td>1.57</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>(TTTCTTA,TGTTTT,400)</td>
<td>TTGGTT</td>
<td>353</td>
<td>0.49</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>(CCGCAAT,TSS START,400)</td>
<td>CCGCAAT</td>
<td>48</td>
<td>1.09</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td>(TCCGAGC,CGCGT,100)</td>
<td>TCCGAGC</td>
<td>9</td>
<td>8.24</td>
<td>4×10^{-8}</td>
</tr>
<tr>
<td>(TGTTCTC,CGCGT,30)</td>
<td>CGCGT</td>
<td>11</td>
<td>3.02</td>
<td>5×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>CGCGT</td>
<td>8</td>
<td>6.55</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGCGG</td>
<td>7</td>
<td>9.09</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>(GAACCAG,TTGTGTG,30)</td>
<td>GAACCAG</td>
<td>10</td>
<td>5.21</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>TTGGTTT</td>
<td>10</td>
<td>5.07</td>
<td>7×10^{-3}</td>
</tr>
</tbody>
</table>
Supplementary Table 2 (a,b): Gene list enrichment, annotation, and flanking sequence analysis for promoter elements identified in Wildermuth et al. (2007) Arabidopsis powdery mildew infection experiment.

Supplementary Table 2(a): Promoter elements in the unpruned model for Arabidopsis powdery mildew infection experiment, listed in order from the last to be pruned from the model to the first. “Putative site” is the assignment of known binding site names to the elements. Putative sites listed in Table 4 are specified by name as is the NFkB-like motif identified by Lebel et al. (1998) and associated with innate immunity. All other identified motifs are listed as new though some of these exhibit significant overlap with known motifs (Higo et al., 1999).

“Component” is the principal component with which the element has a strong effect, and “none” if no principal component significantly dominates the other. The columns n and m are the number of genes in the training set and in the top 1500-list, respectively, that contain the element. The column “p-value” contains the p-values for (n, m) computed using Fisher’s exact test.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Motif</th>
<th>Putative site</th>
<th>Component</th>
<th>n</th>
<th>m</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GACCTT</td>
<td>NFκB-like</td>
<td>1, 2</td>
<td>1672</td>
<td>909</td>
<td>5×10^{-7}</td>
</tr>
<tr>
<td>2</td>
<td>TTAGCT</td>
<td>W-box</td>
<td>1, 2</td>
<td>1629</td>
<td>914</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>3</td>
<td>TACTAC, TGGACC,200</td>
<td>NFκB-like, Myb</td>
<td>1</td>
<td>143</td>
<td>102</td>
<td>9×10^{-8}</td>
</tr>
<tr>
<td>4</td>
<td>TTAGCA, TGGACC,1000</td>
<td>W-box, W-box</td>
<td>1</td>
<td>445</td>
<td>268</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>5</td>
<td>AGCTTT</td>
<td>NFκB-like</td>
<td>1, 2</td>
<td>1460</td>
<td>802</td>
<td>9×10^{-8}</td>
</tr>
<tr>
<td>6</td>
<td>CTTAAT, TGGTTC,1000</td>
<td>new1, new2</td>
<td>1</td>
<td>345</td>
<td>203</td>
<td>3×10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>ATATTT</td>
<td>new3</td>
<td>none</td>
<td>2772</td>
<td>1404</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td>8</td>
<td>TACGCT</td>
<td>TGA</td>
<td>none</td>
<td>711</td>
<td>398</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>9</td>
<td>AGCTGT, TSS START,1000</td>
<td>new4</td>
<td>1</td>
<td>676</td>
<td>391</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>10</td>
<td>TGCCGGT, AGCTTT,200</td>
<td>new5, NFκB-like</td>
<td>none</td>
<td>179</td>
<td>104</td>
<td>2×10^{-2}</td>
</tr>
<tr>
<td>11</td>
<td>AGACTT, TGGACC,200</td>
<td>NFκB-like, W-box</td>
<td>1</td>
<td>478</td>
<td>313</td>
<td>8×10^{-14}</td>
</tr>
<tr>
<td>12</td>
<td>ATCCGG, TGGTAC,200</td>
<td>new6, W-box</td>
<td>1</td>
<td>197</td>
<td>130</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>13</td>
<td>TCACAT, TTTCCA,200</td>
<td>new7, new8</td>
<td>1</td>
<td>520</td>
<td>282</td>
<td>2×10^{-2}</td>
</tr>
<tr>
<td>14</td>
<td>TCATCG</td>
<td>new9</td>
<td>none</td>
<td>805</td>
<td>411</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td>15</td>
<td>TGCTGC, TSS START,200</td>
<td>new10</td>
<td>1</td>
<td>267</td>
<td>135</td>
<td>4×10^{-1}</td>
</tr>
<tr>
<td>16</td>
<td>GAATAT</td>
<td>none</td>
<td>new11</td>
<td>1791</td>
<td>886</td>
<td>8×10^{-1}</td>
</tr>
<tr>
<td>17</td>
<td>CACCCGT, TGGCGT,200</td>
<td>new12, TGA</td>
<td>none</td>
<td>21</td>
<td>18</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>18</td>
<td>TAGCAG, AATTTT,200</td>
<td>new13, new3</td>
<td>none</td>
<td>541</td>
<td>285</td>
<td>9×10^{-2}</td>
</tr>
<tr>
<td>19</td>
<td>CATGCG, GAATAT,1000</td>
<td>Myc, new11</td>
<td>1</td>
<td>665</td>
<td>320</td>
<td>9×10^{-1}</td>
</tr>
<tr>
<td>20</td>
<td>GGGCTG, GTCACT,200</td>
<td>new14, new9</td>
<td>none</td>
<td>48</td>
<td>30</td>
<td>5×10^{-2}</td>
</tr>
<tr>
<td>21</td>
<td>TCGTCC, TGGTAC,200</td>
<td>new15, W-box</td>
<td>1</td>
<td>293</td>
<td>192</td>
<td>1×10^{-8}</td>
</tr>
<tr>
<td>22</td>
<td>GATGGG, AATTTC,1000</td>
<td>new16, new3</td>
<td>none</td>
<td>541</td>
<td>283</td>
<td>1×10^{-1}</td>
</tr>
<tr>
<td>23</td>
<td>CCAGGT, GTCACT,1000</td>
<td>new17, new9</td>
<td>none</td>
<td>180</td>
<td>91</td>
<td>5×10^{-1}</td>
</tr>
<tr>
<td>24</td>
<td>TACCAG, TGGTTC,200</td>
<td>new18, new2</td>
<td>1</td>
<td>120</td>
<td>73</td>
<td>10×10^{-3}</td>
</tr>
<tr>
<td>25</td>
<td>GGCATT, TTTCCA,200</td>
<td>CGCG-box, new8</td>
<td>1</td>
<td>72</td>
<td>42</td>
<td>9×10^{-2}</td>
</tr>
<tr>
<td>26</td>
<td>TCAACC, TGGTTC,200</td>
<td>new19, W-box</td>
<td>1</td>
<td>366</td>
<td>210</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td>27</td>
<td>ATAGCT, AGCTTT,200</td>
<td>W-box, NFκB-like</td>
<td>1</td>
<td>280</td>
<td>161</td>
<td>5×10^{-3}</td>
</tr>
<tr>
<td>28</td>
<td>GAGCTT, TGGACC,1000</td>
<td>new20, W-box</td>
<td>none</td>
<td>376</td>
<td>200</td>
<td>1×10^{-1}</td>
</tr>
<tr>
<td>29</td>
<td>TCAACG</td>
<td>Myb</td>
<td>1</td>
<td>951</td>
<td>556</td>
<td>2×10^{-10}</td>
</tr>
<tr>
<td>30</td>
<td>GCAGTG, GTCACT,1000</td>
<td>new21, new9</td>
<td>1</td>
<td>110</td>
<td>67</td>
<td>1×10^{-2}</td>
</tr>
<tr>
<td>31</td>
<td>GCCGAT, TCAACG,1000</td>
<td>new21, Myb</td>
<td>none</td>
<td>133</td>
<td>71</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td>32</td>
<td>TTAGTC, GACCTT,1000</td>
<td>new22, NFκB-like</td>
<td>none</td>
<td>487</td>
<td>241</td>
<td>6×10^{-1}</td>
</tr>
<tr>
<td>33</td>
<td>TGTCAG, TGCACT,200</td>
<td>new23, W-box</td>
<td>none</td>
<td>106</td>
<td>59</td>
<td>1×10^{-1}</td>
</tr>
<tr>
<td>34</td>
<td>TGGAGC</td>
<td>new2</td>
<td>1</td>
<td>1321</td>
<td>687</td>
<td>4×10^{-2}</td>
</tr>
<tr>
<td>35</td>
<td>GCTTCT, GAATAT,200</td>
<td>new24, new11</td>
<td>none</td>
<td>363</td>
<td>176</td>
<td>7×10^{-1}</td>
</tr>
<tr>
<td>36</td>
<td>TCAAGG, AATTTT,200</td>
<td>new25, new3</td>
<td>1</td>
<td>1312</td>
<td>706</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>37</td>
<td>TGGTCC, AGCTTT,200</td>
<td>new26, NFκB-like</td>
<td>1</td>
<td>282</td>
<td>173</td>
<td>4×10^{-5}</td>
</tr>
<tr>
<td>38</td>
<td>TACCTT, AGCTTT,200</td>
<td>new27, NFκB-like</td>
<td>none</td>
<td>228</td>
<td>116</td>
<td>4×10^{-1}</td>
</tr>
<tr>
<td>39</td>
<td>GTGCAT, GTCACT,1000</td>
<td>new6, new9</td>
<td>1</td>
<td>170</td>
<td>110</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>40</td>
<td>GAAGAT, GTCACT,1000</td>
<td>new28, new9</td>
<td>none</td>
<td>522</td>
<td>260</td>
<td>6×10^{-1}</td>
</tr>
<tr>
<td>41</td>
<td>GGCTGC, AATTTC,1000</td>
<td>new29, new3</td>
<td>1</td>
<td>281</td>
<td>143</td>
<td>4×10^{-1}</td>
</tr>
<tr>
<td>42</td>
<td>GGCGGA, AATTTT,200</td>
<td>GCC-box, new3</td>
<td>2</td>
<td>145</td>
<td>76</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td>43</td>
<td>TTCGCC, GACCTT,1000</td>
<td>new30, NFκB-like</td>
<td>none</td>
<td>590</td>
<td>300</td>
<td>3×10^{-1}</td>
</tr>
<tr>
<td>44</td>
<td>ATACGG, TACACC,200</td>
<td>new31, Myb</td>
<td>none</td>
<td>111</td>
<td>70</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>45</td>
<td>TGTTCG, TCAACC,200</td>
<td>new32, Myb</td>
<td>none</td>
<td>320</td>
<td>187</td>
<td>8×10^{-1}</td>
</tr>
<tr>
<td>46</td>
<td>GATGCC, GAATAT,1000</td>
<td>new16, new11</td>
<td>none</td>
<td>365</td>
<td>185</td>
<td>4×10^{-1}</td>
</tr>
<tr>
<td>47</td>
<td>GAGACG, TGGTTC,200</td>
<td>new33, new2</td>
<td>none</td>
<td>457</td>
<td>243</td>
<td>8×10^{-2}</td>
</tr>
<tr>
<td>48</td>
<td>TGGTTG, TATGTT,200</td>
<td>new34, NFκB-like</td>
<td>1, 2</td>
<td>378</td>
<td>228</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>49</td>
<td>GGAGTG, TGACGT,200</td>
<td>new35, TGA</td>
<td>none</td>
<td>145</td>
<td>81</td>
<td>9×10^{-2}</td>
</tr>
</tbody>
</table>
Supplementary Table 2(b): Information content I_{seq} and corresponding p-values for the 20 base flanking sequences of promoter elements found for arabidopsis mildew infection experiment.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Promoter element (p)</th>
<th>Word(w)</th>
<th>$N_{p,w}$</th>
<th>I_{seq}</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GACTTT</td>
<td>GACTTT</td>
<td>2596</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>TTAGTC</td>
<td>TTAGTC</td>
<td>2628</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(TAAGTC,TCAACG,200)</td>
<td>TCAACG</td>
<td>165</td>
<td>0.28</td>
<td>6×10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>(TGACTA,TGGACC,1000)</td>
<td>TGGACC</td>
<td>164</td>
<td>0.23</td>
<td>8×10^{-2}</td>
</tr>
<tr>
<td>5</td>
<td>AGTCCT</td>
<td>AGTCCT</td>
<td>2112</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(CGTAAT,TGGTGC,1000)</td>
<td>TGGTGC</td>
<td>416</td>
<td>0.13</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>AATTTTT</td>
<td>AATTTTT</td>
<td>10481</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>TGACGG</td>
<td>TGACGG</td>
<td>906</td>
<td>0.16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>(AGTCGT,TSS START,1000)</td>
<td>AGTCGT</td>
<td>843</td>
<td>0.18</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>(TGGGCT,AGTCCT,200)</td>
<td>AGTCCT</td>
<td>231</td>
<td>0.31</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>11</td>
<td>(AGACTT,TGAGT,200)</td>
<td>AGACTT</td>
<td>627</td>
<td>0.21</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>(GTCTGC,TGGACT,200)</td>
<td>TGGACT</td>
<td>671</td>
<td>0.15</td>
<td>1×10^{-16}</td>
</tr>
<tr>
<td>13</td>
<td>(TCAACT,TTTCCA,200)</td>
<td>TTTCCA</td>
<td>675</td>
<td>0.09</td>
<td>2×10^{-5}</td>
</tr>
<tr>
<td>14</td>
<td>GTCACT</td>
<td>GTCACT</td>
<td>975</td>
<td>0.08</td>
<td>2×10^{-9}</td>
</tr>
<tr>
<td>15</td>
<td>(TTGACG,TSS START,200)</td>
<td>TGGACG</td>
<td>134</td>
<td>0.29</td>
<td>6×10^{-2}</td>
</tr>
<tr>
<td>16</td>
<td>GAAAT</td>
<td>GAAAT</td>
<td>2999</td>
<td>0.03</td>
<td>6×10^{-10}</td>
</tr>
<tr>
<td>17</td>
<td>(CACCCT,TGGACT,200)</td>
<td>CACCCT</td>
<td>21</td>
<td>NaN</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>(TATACG,AATTTT,200)</td>
<td>TATACG</td>
<td>667</td>
<td>0.06</td>
<td>2×10^{-2}</td>
</tr>
<tr>
<td>19</td>
<td>(CATGTG,GAATAT,1000)</td>
<td>GAATAT</td>
<td>1214</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>(GGTCTG,GTCATG,200)</td>
<td>GTCATG</td>
<td>891</td>
<td>0.06</td>
<td>6×10^{-5}</td>
</tr>
<tr>
<td>21</td>
<td>(TTCGTC,TGGACT,200)</td>
<td>TGGACT</td>
<td>1146</td>
<td>0.05</td>
<td>3×10^{-5}</td>
</tr>
<tr>
<td>22</td>
<td>(TTCGTC,TGGACT,200)</td>
<td>TGGACT</td>
<td>50</td>
<td>0.88</td>
<td>1×10^{-2}</td>
</tr>
<tr>
<td>23</td>
<td>(GATGGG,AATTTT,1000)</td>
<td>AATTTT</td>
<td>1913</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>(CCACGG,GTCAGT,1000)</td>
<td>CCACGG</td>
<td>440</td>
<td>0.11</td>
<td>8×10^{-8}</td>
</tr>
<tr>
<td>25</td>
<td>(GTCAGT,CACCCT,1000)</td>
<td>CACCCT</td>
<td>217</td>
<td>0.16</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td>26</td>
<td>(TTGACG,TSS START,200)</td>
<td>TGGACG</td>
<td>133</td>
<td>0.34</td>
<td>8×10^{-3}</td>
</tr>
<tr>
<td>27</td>
<td>(CGCGGT,TGGTGC,200)</td>
<td>CCGGT</td>
<td>86</td>
<td>0.7</td>
<td>5×10^{-6}</td>
</tr>
<tr>
<td>28</td>
<td>(TTTCCA,AATTTT,1000)</td>
<td>TTTCCA</td>
<td>93</td>
<td>0.31</td>
<td>6×10^{-1}</td>
</tr>
<tr>
<td>Rank</td>
<td>Promoter element (p)</td>
<td>Word(w)</td>
<td>N(p, w)</td>
<td>(J_{aq})</td>
<td>P-value</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>26</td>
<td>(TCAAAC,TTGACC,200)</td>
<td>TCAAAC</td>
<td>498</td>
<td>0.1</td>
<td>(7 \times 10^{-10})</td>
</tr>
<tr>
<td>27</td>
<td>(ATGACT,AGTCTT,200)</td>
<td>ATGACT</td>
<td>341</td>
<td>0.14</td>
<td>(4 \times 10^{-3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGTCTT</td>
<td>349</td>
<td>0.25</td>
<td>(2 \times 10^{-13})</td>
</tr>
<tr>
<td>28</td>
<td>(GAGCTT,TTGACC,1000)</td>
<td>GAGCTT</td>
<td>509</td>
<td>0.14</td>
<td>(6 \times 10^{-9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTGACC</td>
<td>484</td>
<td>0.17</td>
<td>(4 \times 10^{-11})</td>
</tr>
<tr>
<td>29</td>
<td>TCAACC</td>
<td>TCAACC</td>
<td>1194</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>(GGCATG,GTCATG,1000)</td>
<td>GGCATG</td>
<td>123</td>
<td>0.38</td>
<td>(3 \times 10^{-3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTCATG</td>
<td>134</td>
<td>0.35</td>
<td>(4 \times 10^{-3})</td>
</tr>
<tr>
<td>31</td>
<td>(GGCATG,TCAACC,1000)</td>
<td>GGCATG</td>
<td>145</td>
<td>0.39</td>
<td>(4 \times 10^{-5})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCAACC</td>
<td>174</td>
<td>0.18</td>
<td>(4 \times 10^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTGACC</td>
<td>438</td>
<td>0.17</td>
<td>(4 \times 10^{-10})</td>
</tr>
<tr>
<td>32</td>
<td>(TTATCG,AGTCTT,1000)</td>
<td>TTATCG</td>
<td>598</td>
<td>0.08</td>
<td>(9 \times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GACTTT</td>
<td>748</td>
<td>0.14</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>(TGTCGA,TTGACC,200)</td>
<td>TGTCGA</td>
<td>119</td>
<td>0.35</td>
<td>(3 \times 10^{-2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTGACC</td>
<td>119</td>
<td>0.41</td>
<td>(2 \times 10^{-5})</td>
</tr>
<tr>
<td>34</td>
<td>TTGGTC</td>
<td>TTGGTC</td>
<td>1812</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>(GCTTTT,GAAAT,200)</td>
<td>GCTTTT</td>
<td>427</td>
<td>0.09</td>
<td>(8 \times 10^{-2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAAAT</td>
<td>480</td>
<td>0.07</td>
<td>(3 \times 10^{-1})</td>
</tr>
<tr>
<td>36</td>
<td>(TCAAG,AATTTT,200)</td>
<td>TCAAG</td>
<td>1853</td>
<td>0.04</td>
<td>(2 \times 10^{-11})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AATTTT</td>
<td>2948</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>(TCTTCG,AGTCTT,200)</td>
<td>TCTTCG</td>
<td>361</td>
<td>0.24</td>
<td>(7 \times 10^{-13})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGTCTT</td>
<td>351</td>
<td>0.32</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>(TTACCT,AGTCTT,200)</td>
<td>TTACCT</td>
<td>251</td>
<td>0.14</td>
<td>(2 \times 10^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGTCTT</td>
<td>272</td>
<td>0.23</td>
<td>(9 \times 10^{-7})</td>
</tr>
<tr>
<td>39</td>
<td>(GTCGTC,GTCATG,1000)</td>
<td>GTCGTC</td>
<td>225</td>
<td>0.61</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTCATG</td>
<td>202</td>
<td>0.23</td>
<td>(4 \times 10^{-3})</td>
</tr>
<tr>
<td>40</td>
<td>(GAAGAT,GTCATG,1000)</td>
<td>GAAGAT</td>
<td>881</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTCATG</td>
<td>626</td>
<td>0.1</td>
<td>(4 \times 10^{-7})</td>
</tr>
<tr>
<td>41</td>
<td>(GGGGAG,AATTTT,1000)</td>
<td>GGGGAG</td>
<td>305</td>
<td>0.19</td>
<td>(4 \times 10^{-5})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AATTTT</td>
<td>996</td>
<td>0.09</td>
<td>(6 \times 10^{-14})</td>
</tr>
<tr>
<td>42</td>
<td>(GGCGGC,AATTTT,200)</td>
<td>GGCGGC</td>
<td>167</td>
<td>0.45</td>
<td>(7 \times 10^{-10})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AATTTT</td>
<td>238</td>
<td>0.23</td>
<td>(1 \times 10^{-4})</td>
</tr>
<tr>
<td>43</td>
<td>(TTACCA,GACTTT,1000)</td>
<td>TTACCA</td>
<td>724</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GACTTT</td>
<td>923</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>(ATACGT,TCAACC,200)</td>
<td>ATACGT</td>
<td>135</td>
<td>0.27</td>
<td>(1 \times 10^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCAACC</td>
<td>133</td>
<td>0.26</td>
<td>(2 \times 10^{-1})</td>
</tr>
<tr>
<td>45</td>
<td>(TATTTT,TCAACC,200)</td>
<td>TATTTT</td>
<td>418</td>
<td>0.07</td>
<td>(4 \times 10^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCAACC</td>
<td>373</td>
<td>0.15</td>
<td>(2 \times 10^{-5})</td>
</tr>
<tr>
<td>46</td>
<td>(GATGGG,GAAAT,1000)</td>
<td>GATGGG</td>
<td>428</td>
<td>0.12</td>
<td>(2 \times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAAAT</td>
<td>586</td>
<td>0.05</td>
<td>(3 \times 10^{-1})</td>
</tr>
<tr>
<td>47</td>
<td>(GAGGAG,TGGTTC,1000)</td>
<td>GAGGAG</td>
<td>641</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGGTTC</td>
<td>633</td>
<td>0.11</td>
<td>(10 \times 10^{-9})</td>
</tr>
<tr>
<td>48</td>
<td>(TGAGGT,TGCTTT,200)</td>
<td>TGAGGT</td>
<td>464</td>
<td>0.18</td>
<td>(9 \times 10^{-12})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGCTTT</td>
<td>466</td>
<td>0.13</td>
<td>(1 \times 10^{-5})</td>
</tr>
<tr>
<td>49</td>
<td>(GGAGAT,TGACGT,200)</td>
<td>GGAGAT</td>
<td>168</td>
<td>0.27</td>
<td>(8 \times 10^{-3})</td>
</tr>
</tbody>
</table>
Supplementary Figures 1 and 2: Principal component analysis of Spellman et al. yeast cell cycle data.

Supplementary Figure 1: Principal components of the yeast α-arrest experiment.
Supplementary Figure 2: Scree plot for principal components of the yeast